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Abstract

A number of recently published papers have focused on the problem of testing for a

unit root in the case where the driving shocks may be unconditionally heteroskedastic.

These papers have, however, assumed that the lag length in the unit root test regression

is a deterministic function of the sample size, rather than data-determined, the latter

being standard empirical practice. In this paper we investigate the finite sample impact

of unconditional heteroskedasticity on conventional data-dependent methods of lag se-

lection in augmented Dickey-Fuller type unit root test regressions and propose new lag

selection criteria which allow for the presence of heteroskedasticity in the shocks. We

show that standard lag selection methods show a tendency to over-fit the lag order under

heteroskedasticity, which results in significant power losses in the (wild bootstrap im-

plementation of the) augmented Dickey-Fuller tests under the alternative. The new lag

selection criteria we propose are shown to avoid this problem yet deliver unit root tests

with almost identical finite sample size and power properties as the corresponding tests

based on conventional lag selection methods when the shocks are homoskedastic.

Keywords: Unit root test; lag selection; information criteria; wild bootstrap; nonsta-

tionary volatility.

J.E.L. Classifications: C22; C15.

1 Introduction

Applied researchers have recently focused attention on the question of whether or not the

variability in the shocks driving macroeconomic time series has changed over time; see, e.g.,

∗Address correspondence to: Robert Taylor, School of Economics, University of Nottingham, Nottingham,
NG7 2RD, UK. E-mail: Robert.Taylor@nottingham.ac.uk
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the literature review in Busetti and Taylor (2003). The empirical evidence has suggested

that time-varying behaviour, in particular a general decline, in unconditional volatility in

the shocks driving macroeconomic time-series over the past twenty years or so is a relatively

common phenomenon; see, inter alia, Kim and Nelson (1999), McConnell and Perez Quiros

(2000), Van Dijk, Osborn, and Sensier (2002), Sensier and Van Dijk (2004) and references

therein.1 Sensier and Van Dijk (2004), for example, report that over 80% of the real and price

variables in the Stock and Watson (1999) data-set reject the null of constant unconditional

innovation variance. Empirical evidence also suggests that data are often characterized by

smooth volatility changes rather than by abrupt changes (see, inter alia, Van Dijk et al.,

2002).

Such, nonstationary volatility, effects can significantly impact on the size of standard unit

root tests, even asymptotically, as has been shown by Cavaliere and Taylor (2007, 2008),

among others. A solution to this problem is analyzed by Cavaliere and Taylor (2008, 2009b),

who employ the wild bootstrap to capture the nonstationary volatility within the re-sampled

data. They show that the wild bootstrap correctly reproduces the first-order limiting null

distribution under nonstationary volatility, thereby allowing for the construction of asymp-

totically valid bootstrap tests.

The analysis in Cavaliere and Taylor (2008, 2009b) is based on the use of a lag length in

the augmented Dickey-Fuller [ADF] test regression which is a deterministic function of the

sample size. In practice, however, applied researchers usually base their analysis on an ADF

regression where the lag order is chosen by data-dependent methods. Often this is done using

standard information criteria or by sequential t-testing (using conventional critical values)

on the significance on the highest lag. However, both of these approaches are misspecified

in the presence of nonstationary volatility: standard information criteria are based on the

assumption of constant volatility, while the limit distributions used in sequential t-testing are

affected by the presence of nonstationary volatility. As such, if nonstationary volatility is

present in the data, the lag length selected by the applied researcher may not be appropriate.

While not necessarily invalidating the asymptotic properties of the unit root test, this may

nonetheless have a significant impact on finite sample performance.

In this paper we analyze the finite sample effects of nonstationary volatility on the selection

of the lag order in (bootstrap) unit root testing. Using Monte Carlo simulation methods

we will show that, under certain time-varying volatility specifications, standard information

criteria select too many lags and that this has a significant negative effect on the power of the

resulting unit root test. As a consequence, we also propose a modification of the standard

information criteria, based on the approach of Beare (2008) which re-scales the data by an

estimate of the underlying volatility process. Again using Monte Carlo methods, we show that

1The recent financial turmoil associated with the onset of the 2008 credit crisis will undoubtedly reverse
this trend and effect a corresponding rise in unconditional volatility; this, of course, reinforces the need to
allow for the possibility of non-constancy in unconditional volatility.
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these new criteria are considerably more robust, in terms of the lag length they select, than

the standard criteria in the presence of nonstationary volatility and perform very similarly to

the standard criteria when volatility is constant. We show that this results in unit root tests

which display significantly more power than those based on the standard lag selection criteria

under nonstationary volatility yet do not lose power relative to these tests when volatility is

constant. Moreover, the sizes of the tests based on the standard and new criteria are shown

to be broadly the same under both constant and nonconstant volatility environments.

The structure of the paper is as follows. In Section 2 we introduce our reference data

generating process (DGP) and detail the class of heteroskedastic volatility processes under

which we will work. The (wild bootstrap) unit root tests, and associated lag selection criteria

with the new heteroskedasticity-robust modification thereof are discussed in Section 3. The

finite-sample properties of the standard and new lag selection criteria, along with the size

and power properties of the associated (wild bootstrap) unit root tests, are explored through

Monte Carlo simulation in Section 4. Section 5 offers some conclusions.

2 The Heteroskedastic Model

Consider the case where we have T +1 observations generated according to the following data

generating process (DGP),

yt = xt + β′zt, t = 0, 1, . . . , T, (1a)

xt = ρxt−1 + ut, t = 1, . . . , T, (1b)

ut = εt +
∞
∑

j=1

ψjεt−j =: ψ(L)εt, (1c)

εt = σtet (1d)

with E(x20) < ∞. Our focus in this paper is on tests for whether or not yt contains a unit

root; that is, on testing H0 : ρ = 1 against H1 : |ρ| < 1 in (1).

In (1a), zt is a vector of deterministic components. As in Ng and Perron (2001) we focus

on the κth-order trend function, zt := (1, t, . . . , tκ)′, with special focus on the leading cases of

a constant (κ = 0) and linear trend (κ = 1). We also make the following assumptions on the

shocks ut, where D := D[0, 1] denotes the space of right continuous with left limit (càdlàg)

processes:

Assumption 1. (i) ψ(z) 6= 0 for all |z| ≤ 1, and
∑∞

j=1
j|ψj | < ∞. (ii) et is i.i.d. with

E et = 0, E e2t = 1 and E |et|
4 < ∞. (iii) The volatility term σt satisfies σt = ω(t/T ) for all

r ∈ [0, 1], where ω(·) ∈ D is nonstochastic, twice-differentiable and strictly positive.

Remark 1. Assumption 1 corresponds to the set of conditions imposed on the shocks in
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Cavaliere and Taylor (2008) and Smeekes and Taylor (2011), strengthened by the addition

of condition (iii). This additional condition is required because the new heteroskedasticity-

robust information criteria, which we propose in section 3 below, require a consistent estimate

of the volatility process. Beare (2008) shows that (iii) suffices for this purpose when using

a nonparametric kernel estimator as is required here since we have not assumed a specific

parametric model for the volatility process. As the conditions in Assumption 1 are stronger

than those in Cavaliere and Taylor (2008) and Smeekes and Taylor (2011), the large sample

validity of the bootstrap unit root tests discussed in the next section is guaranteed. The

reader is directed to Cavaliere and Taylor (2008) and Beare (2008) for further discussion of

the conditions imposed by Assumption 1. Notice that Assumption 1 contains unconditional

homoskedasticity as a special case.

3 Unit Root Testing and Information Criteria

3.1 Bootstrap Unit Root Tests

For the purposes of this paper we will focus our attention on wild bootstrap implementations

of the augmented Dickey-Fuller (ADF) tests. We do so because of the enduring popularity

of these tests with practitioners. However, we note that the analysis provided in this paper

is also valid for any unit root test that requires an autoregressive lag order to be selected.

The ADF t-statistic is the usual regression t-statistic of significance on γ, denoted tdγ in what

follows, in the ADF regression

∆ydt = γydt−1 +

p
∑

j=1

φp,j∆y
d
t−j + εdp,t, (2)

where ydt := yt − β̂′zt is the de-trended analogue of yt, where the parameter estimate β̂ can

be obtained either by the OLS or the quasi-difference (QD) regression of yt on zt; see, among

others, Elliott, Rothenberg, and Stock (1996). In the context of (2), p is the lag truncation

order. We defer a discussion of the criteria that will be used to estimate p until sections 3.2

and 3.3.

Under nonstationary volatility, the ADF tdγ statistic is not asymptotically pivotal and the

associated ADF test can display very large size distortions; see Cavaliere and Taylor (2008,

2009b). One solution to this problem, studied by Cavaliere and Taylor (2008, 2009b) and

Smeekes and Taylor (2011) among others, is to apply the wild bootstrap principle. Cavaliere

and Taylor (2008, 2009b) demonstrate the asymptotic validity of this approach, for the case

of a deterministic lag length satisfying Assumption 2 below, and give simulation results which

show that the method works well in finite samples. Hence, our focus in what follows will be

on wild bootstrap implementations of the ADF test where data-dependent methods are used
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to select the lag length in (2). We now outline the wild bootstrap algorithm which we will

use.

Algorithm 1.

1. Calculate ydt := yt − β̂′zt, where β̂ is obtained either by the OLS or QD regression of yt

on zt.

2. Estimate by OLS the ADF regression in (2) using a lag order, q, to obtain the ADF

residuals

ε̌dq,t := ∆ydt − γ̌ydt−1 −

q
∑

j=1

φ̌q,j∆y
d
t−j, t = 1, . . . , T, (3)

by defining y−1, . . . , y−q := 0.

3. Construct (wild) bootstrap errors ε∗t according to the device ε∗t := ξtε̌
d
q,t, where ξt

satisfies E(ξt) = 0 and E(ξ2t ) = 1.2

4. Build u∗t recursively as u∗t =
∑q

j=1
φ̌q,ju

∗
t−j + ε∗t , using the estimated parameters φ̌q,j

from Step 2 (initialised at u∗0, . . . , u
∗
1−q = 0), and build y∗t as y∗t = y∗t−1+u

∗
t , t = 1, ..., T ,

initialised at y∗0 = 0.

5. Using the bootstrap sample y∗t , apply the same method of detrending as applied to the

original sample in step 1 to obtain the detrended bootstrap series yd ∗t := y∗t − β̂∗′zt,

where β̂∗ is defined analogously as in step 1, but with the bootstrap data. Calculate

the bootstrap augmented ADF statistic, denoted td ∗γ , from the bootstrap analogue of

the ADF regression, with lag truncation p∗,

∆yd ∗t = γ∗yd ∗t−1 +

p∗
∑

j=1

φp∗,j∆y
d ∗
t−j + εd ∗p∗,t, t = p∗ + 1, . . . , T. (4)

6. Repeat Steps 3 to 5 N times, obtaining bootstrap test statistics, td ∗γ,b say, for b =

1, . . . , N , and calculate the bootstrap critical value

cvd ∗(π) := max{x : N−1

N
∑

b=1

I(td ∗γ,b < x) ≤ π}

or, equivalently, as the π-quantile of the ordered {td ∗γ,b}
N
b=1

statistics. Reject the null of

a unit root if tdγ,b is smaller than cvd ∗(π), where π is the nominal level of the test. �

2In this paper we take ξt to be standard normal. Other choices are also possible, although Cavaliere and
Taylor (2008, Remark 6) mention that this has almost no impact on finite sample behaviour.
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3.2 Standard Lag Selection Criteria

While the wild bootstrap procedure outlined in Algorithm 1 takes account of any possible

nonstationary volatility in the shocks without the need to parametrically model the volatility

process, the presence of the lagged dependent variables in (2) is required to parametrically

account for any serial correlation in the shocks. Consequently, in order to implement the ADF

test, the selection of an appropriate lag length in (2), and indeed in (3) and (4), is required.

It is unrealistic to assume that the true value of p, p0 say, in (2) is known to the practitioner,

since the nature of the serial correlation in ut cannot be reasonably assumed known. Indeed,

p0 may be infinite, as is the case, for example, if ut is a finite-order moving average (MA)

process. In such cases, it is well known, see for example Chang and Park (2002), that if the

lag truncation order in (2) satisfies the following deterministic rate condition:

Assumption 2. Let p→ ∞ and p = o(T 1/3) as T → ∞.

then, provided εt in (1c) is either homoskedastic or conditionally heteroskedastic (but uncon-

ditionally homoskedastic), the resulting ADF statistic, tdγ , will have the usual Dickey-Fuller

limiting null distribution free of serial correlation nuisance parameters; as tabulated for the

case of OLS detrending in Hamilton (1994, p. 763) and for QD detrending in Elliott et al.

(1996, p. 825). As noted in section 3.1, Cavaliere and Taylor (2008, 2009b) demonstrate a

corresponding result for the case where εt is unconditionally heteroskedastic; here the limit-

ing null distribution of tdγ remains free of serial correlation nuisance parameters but does now

depend on the form of the underlying volatility process.

As pointed out by Cavaliere and Taylor (2009a, Section 3.3), the sieve, or re-colouring,

device in step 4 of Algorithm 1 is motivated purely by finite sample concerns, and q does not

therefore have to increase to infinity with the sample size.3 Also, although p∗ is not required

to diverge with T , we do require that q ≤ p∗ for large T .4 Specifically, we make the following

assumptions on q and p∗:

Assumption 3. (i) Let p∗ = o(T 1/3); (ii) there is a T ∗ such that q ≤ p∗ for all T > T ∗.

For a given sample size, the conditions in Assumptions 2 and 3 do not provide any practical

guidance on how to select the lag length in (2), (3) and (4). A popular choice for estimating

the lag length, which permits a trade-off between the size distortions that result from including

too few lags and the power losses that obtain when too many lags are included, is to base it

on an information criterion (see also Remark 2). This approach estimates the lag length as

3This differs from the approach taken by Smeekes and Taylor (2011, Assumption 5) for reasons explained
in their Remark 15.

4Cavaliere and Taylor (2009a) assume that q ≤ p∗ for all T but this is not necessary for the validity of the
bootstrap. By allowing p∗ to be smaller than q one can replicate the effect of under-fitting the lag length in
the bootstrap, which may improve finite sample performance (cf. Richard, 2009).
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follows

p̂ := arg min
pmin≤k≤pmax

IC(k), IC(k) := ln σ̂2k + k
CT

T
, (5)

where σ̂k := (T − pmax)
−1

∑T
t=pmax+1

(ε̂dk,t)
2 with ε̂dk,t the OLS residuals from the k-th order

ADF regression for ydt in (2); that is, ε̂dk,t := ∆ydt − γ̂ydt−1 −
∑k

j=1
φ̂k,j∆y

d
t−j, and where

pmin ≤ pmax are selected such that pmin, pmax → ∞ as T → ∞ with pmax satisfying the

rate condition in Assumption 2. In the context of (5), CT is a penalty function that differs

according to the specific information criterion to be used; for AIC CT := 2, while for BIC

CT := lnT . Tsay (1984) shows that for finite p, the properties of AIC and BIC in the

stationary case remain the same in the presence of unit roots; that is, BIC is consistent

while AIC is not (it overestimates with a positive probability). Pötscher (1989) extends these

results to allow for nonconstant volatility in the errors, and finds that consistency of BIC in

his general setup cannot be guaranteed (although BIC is found to be consistent in stable AR

models with nonconstant volatility).

Ng and Perron (2001) propose a class of modified information criteria (MIC), motivated

specifically for selecting the lag length in the ADF regression, (2). Their proposed class of

information criteria can be written as

MIC(k) := ln σ̂2k + k
CT + τT (k)

T
,

where τT (k) := (σ̂2k)
−1γ̂2

∑T
pmax+1

(ydt−1)
2. The associated lag length estimate is then defined

as in (5) but replacing IC(k) by MIC(k) in the definition of p̂. The penalty function CT has

to be selected in the same way as for the original criteria; for example, taking CT := 2 yields

the modified AIC (MAIC) criterion, and taking CT := lnT yields the modified BIC (MBIC)

criterion. Although asymptotically the properties of the original criteria will be maintained,

Ng and Perron (2001) show that these modified criteria yield large improvements over the

standard criteria for the purpose of unit root testing, in particular if a negative moving average

parameter is present in the short-run dynamics. In that case the MIC will select considerably

more lags than standard criteria and thus improve the size of the corresponding unit root

test. Perron and Qu (2007) propose a further modification of these criteria, by suggesting

that they should always be applied to OLS rather than QD detrended data even if the unit

root test itself is based on QD detrended data. This will improve the power properties of the

test, in particular for alternatives further from the null.

Although nonstationary volatility may alter the large sample properties of the lag selection

criteria (Pötscher, 1989), provided pmin and pmax satisfy the conditions stated above, then

the limiting null distributions of tdγ and td ∗γ will not be affected by the short-run dynamics

(although they will of course be affected by the form of the volatility). Our investigation is

therefore purely related to the performance of the (wild bootstrap) ADF unit root test in
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finite samples, since in finite samples the lag selection criteria are misspecified if the volatility

process is time-varying and cannot necessarily be relied upon to yield an appropriate estimate

of the required lag lengths. This is confirmed by the simulation results we will subsequently

present in Section 4.

Remark 2. We focus here on lag length selection through information criteria rather than

through sequential t-testing, as this approach has proven to be more popular and also more

successful; sequential t-testing tends to select too many lags on average. Sequential t-testing

can be adapted to the setting of nonstationary volatility by either using heteroskedasticity-

robust standard errors, or applying again the wild bootstrap.

In the next subsection we will present further modifications to the standard lag order

selection methods outlined above that are designed to be robust to nonstationary volatility.

3.3 Heteroskedasticity-Robust Lag Selection Criteria

In this subsection we propose a method for lag length selection based on information criteria

that is designed to be robust to heteroskedasticity. Rather than modifying the information

criteria themselves, we modify the series that is the input to the information criteria. We

adapt the idea proposed in Beare (2008) to lag length selection; that is, we estimate the

volatility nonparametrically and then re-scale the series with the estimated volatility.

To estimate the volatility nonparametrically we use the local constant, or Nadaraya-

Watson, estimator also used by Beare (2008).5 The volatility estimator at time t is then

defined as

σ̂m,t :=
√

ω̂2
m(t/T ), ω̂2

k(r) :=

∑T
t=1

K
(

t/T−r
h

)

(ε̌dm,t)
2

∑T
t=1

K
(

t/T−r
h

) (6)

where {ε̌dm,t} are defined in (3) with a lag truncation of m, K(·) is a kernel function and h is a

bandwidth parameter. As in Beare (2008), the following assumption is needed on the kernel

K(·) and the bandwidth h in order to ensure that (6) consistently estimates the volatility

process:

Assumption 4. (i) K(·) is continuously differentiable and satisfies
∫

K(x)dx > 0,
∫

|xK(x)| dx

<∞, and
∫

|xK ′(x)| dx <∞. Moreover, the Fourier transform of K(·), denoted ψ(·), satisfies
∫

|xψ(x)| dx <∞. (ii) h→ 0 and Th4 → ∞ as T → ∞.

5We also considered the re-weighted local constant estimator proposed by Xu and Phillips (2011). As
discussed by Xu and Phillips (2011), this estimator shares all the advantages of the local linear estimator.
However, unlike the local linear estimator (but like the local constant estimator), it cannot be negative. The
simulation results with this estimator were virtually identical to the results reported here with the local constant
estimator and, hence, are omitted in the interests of space.
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The volatility estimates from (6) are then used to re-scale the series of interest as follows:

ỹt :=

t
∑

s=1

∆yds
σ̂m,s

, ỹ0 := 0. (7)

The idea behind the re-scaling in (7) is that ỹt will be rendered (approximately) homoskedas-

tic. The re-scaled series ỹt is then used as input to the information criteria. The corresponding

re-scaled (modified) information criteria, denoted as RS(M)IC in what follows, are then cal-

culated as

RSIC(k) := ln σ̃2k + k
CT

T
, RSMIC(k) := ln σ̃2k + k

CT + τ̃T (k)

T
,

where τ̃T (k) := (σ̃2k)
−1γ̃2

∑T
pmax+1

(ỹdt−1)
2, σ̃k = (T −pmax)

−1
∑T

t=pmax+1
(ε̃dk,t)

2, and where ε̃dk,t
is the OLS residual from a k-th order ADF regression on ỹdt , which is either the OLS or QD

detrended analogue of ỹt.

In practice one must also select a value for the lag truncation m used in the construction

of the volatility estimator in (6). The choice m = 0 corresponds to Beare (2008), while taking

m = pmax would also seem to be a sensible choice in the lag selection framework. In this

paper we will follow Beare (2008) and set m = 0, but unreported simulations showed that

setting m = pmax gave virtually identical results.6

4 Monte Carlo Simulations

In this section we will use Monte Carlo simulation methods to investigate the finite sample

performance of the standard information criteria and their new heteroskedasticity-robust

analogues developed in the previous section. Comparison is made both of the lag order

selected by these criteria and of the size and power properties of the associated wild bootstrap

ADF tests for a variety of homoskedastic and heteroskedastic ARMA models.

4.1 The Monte Carlo Design

In the simulation study we use the following DGP:

yt = xt + β′zt, t = 0, 1, . . . , T, (8a)

xt = ρTxt−1 + ut, t = 1, . . . , T, (8b)

ut = φ1ut−1 + φ2ut−2 + φ3ut−3 + εt + θεt−1 (8c)

εt = σtet, et ∼ i.i.d. N(0, 1), (8d)

6Similarly, it is possible to use the residuals which are obtained when imposing the unit root null hypothesis.
Unreported simulation results indicated that the results do not change in this case either.
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for the local-to-unity setting where ρT = 1 − c/T , such that c = 0 corresponds to the unit

root null hypothesis and c > 0 to local alternatives. Without loss of generality we set β = 0

and x0 = 0.

We report results for the combinations of the AR and MA parameters φ1, φ2, φ3 and θ in

(8c) given in Table 1. Table 1 also reports for each model the true value, p0, of the associated

lag augmentation in (2). These ARMA parameters allow for a range of different dynamic

models, ranging from near I(2) data (models 8 and, to a lesser extent, 5 and 10, with ρT = 1)

to near over-differenced data (model 11 with ρT = 1). The range of models is very similar to

that considered by Ng and Perron (2005) and allows both finite AR (of orders 1,2 and 3) and

MA(1) models.

Insert Table 1 about here

Results are reported for following two models of volatility models:

1. Single break in volatility: σ2t = σ20+(σ21−σ
2
0)I(t > ⌊τT ⌋), where we set σ0 = 0. Defining

δ = σ0/σ1, we consider parameters δ = 1/3, 3 and τ = 0.2, 0.8.

2. Stochastic volatility: σ2t = ω2(t/T ) where ω2(s) = σ20 exp(νJc(s)). Again we set σ0 = 1,

and we consider parameters c = 0, 10 and ν = 4, 9.

Notice that neither of these volatility models are formally allowed under the assumptions

needed on the kernel estimation, although both are allowed for the wild bootstrap unit root

tests (see Cavaliere and Taylor, 2009b). We still chose these models of volatility as they are

popular choices in the literature and appear to describe empirically observed patterns well.

Moreover, good performance by the new lag selection criteria for models such as these which

fall outside the class of models they are intended for can be argued to reinforce their potential.

Also observe that the homoskedastic case is contained in the first model when δ = 1, and in

the second model when ν = 0.

In this analysis we present results only for the MAIC criterion of Ng and Perron (2001) and

the heteroskedasticity-robust analogue thereof, RSMAIC, from section 3.3. We do so because

MAIC is the most popular and successful criterion used in unit root testing. However, a

summary of the corresponding results for other popular lag selection methods is given at the

end of this section. In the context of the MAIC and RSMAIC criteria the minimum lag length,

pmin was set to zero throughout, while the maximum lag length was set to pmax = A(T/100)1/4 ,

with the choice of the constant A specified in the subsections which follow. We report results

for the sample sizes T = 150 and T = 250.7 Throughout this section we will only report results

for the specification where a constant is included in zt in (8a). Results for the constant and

7For smaller sample sizes the differences between the regular and re-scaled IC are not so noticeable. This
is most likely at least partly caused by the fact that the maximum lag lengths are considerably smaller for
such sample sizes.
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trend case are very similar, and are available on request. As recommended by Perron and Qu

(2007), we apply the information criteria to OLS detrended data. As mentioned before, the

volatility estimator used in the RSMAIC is σ̂0,t, with the kernel K(·) taken as the Gaussian

kernel and the bandwidth set equal to h = 0.1.8

4.2 Selected Lag Lengths

We first focus on the lag lengths selected by the standard MAIC and the new heteroskedasticity-

robust RSMAIC criteria. As part of our analysis we vary the maximum lag length, pmax, by

considering results for both A = 6 and A = 12. In large samples and for the (low-order)

autoregressive models the lag selection should not be significantly affected by changing the

upper bound. If, however, a criterion is seriously affected by the choice of pmax then this

provides clear evidence that the criterion is not selecting the lag length appropriately for the

sample sizes considered. All results are based on 5000 simulations.

Insert Table 2 about here

Table 2 reports the average (taken across the Monte Carlo replications) selected lag lengths

obtained under homoskedasticity. It can be seen from these results that the MAIC and

RSMAIC criteria perform very similarly to one another here for all of the AR and MA

models considered. These results suggest that the re-scaling approach used in calculating

the RSMAIC criterion does not fundamentally change its properties from those of the MAIC

criterion under homoskedasticity, which is a necessary condition to apply it successfully. It

can also be seen that for the AR models considered, other things being equal, changing the

maximum lag length (through the choice of the constant A) has only a minor impact on the

average lag length selected for both criteria, as expected.

Insert Tables 3-6 about here

Tables 3 to 6 present the corresponding results for the case of a single break in the

volatility. From these results we can see that both the direction and timing of the break have a

considerable impact on the lag length selected by the standard MAIC criterion. In particular,

while late negative or early positive breaks do not appear to have a significant impact on the

lag length selected by MAIC, the effect of either a late positive or early negative break is,

on the other hand, substantial. For these volatility models MAIC selects considerably higher

lag lengths lags than it does under homoskedasticity. This effect can be seen for all of the

ARMA models considered. Moreover, in these cases changing the maximum lag length now

has a major impact on the performance of MAIC, which is again a clear indication that the

standard MAIC criterion selects too many lags, “pushing” up against the upper bound as

8Different specifications again gave very similar results.
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a result. In contrast, the RSMAIC criterion appears to select roughly the same number of

lags in the single break models as it does under homoskedasticity; there only appears to be

a minimal increase in some of the cases considered. Also, RSMAIC is far less affected by

varying pmax than MAIC is, which again confirms the robustness of the lag length selected

by RSMAIC to the single break model of volatility.

Insert Tables 7-10 about here

Tables 7 to 10 present the average selected lags under stochastic volatility. Here from a

comparison with the results in Table 2 it can again be seen that the standard MAIC criterion

selects a higher lag length on average than it does under homoskedasticity, most notably when

c = 0. We now also see an increase in the average lag length selected by RSMAIC, although it

still selects a considerably lower average lag length than MAIC. Hence, even though RSMAIC

is affected to some degree by stochastic volatility, it remains considerably more reliable than

MAIC in this setting.

To summarise, our simulation results have shown that lag length selection by MAIC is

affected by the presence of nonstationary volatility in the errors. As such it cannot be reliably

used to select an appropriate lag length for a unit root test in this setting. The simulation

results also show that RSMAIC appears to be significantly more robust to the presence of

nonstationary volatility, while its performance under homoskedasticity is almost identical to

MAIC. In the context of unit root testing, it is arguably the performance of the unit root

test for which lag orders are selected, rather than the actual selected lag order, which is of

primary importance. If the lag selection has no effect on the size or power properties of the

resulting unit root test, then there is no problem in using a potentially misspecified method

such as MAIC. Therefore we will now investigate the impact of nonstationary volatility on

the finite sample size and power properties of the wild bootstrap ADF unit root test, when

the lag length in the ADF regression has been selected by either MAIC or RSMAIC.

4.3 Rejection Frequencies of Bootstrap Unit Root Tests

In this subsection we investigate the performance of the wild bootstrap ADF unit root test

from Algorithm 1, using QD detrending, and where the lag truncation order in the original

ADF regression (2), the sieve regression (3), and the bootstrap ADF regression (4), were

selected by either MAIC or RSMAIC, using the same tuning parameters as outlined in section

4.1, with results reported for A = 12. All results in this subsection are based on 5000

simulations and 199 bootstrap replications.

Insert Tables 11-13 about here

We first report, in Tables 11 to 13, the size properties of the wild bootstrap ADF tests

based on MAIC and RSMAIC lag selection for the same set of ARMA and volatility models
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as were used in the previous subsection. Sizes for MAIC and RSMAIC seem to be comparable

across the different models; both give sizes close to the nominal level of 5% except for model

11 (which has a large negative MA parameter), where there is some oversize (of roughly the

same degree) seen for both methods. Overall it does not appear that the choice between using

MAIC or RSMAIC when choosing the lag length has a significant impact on the size of the

resulting unit root test, regardless of whether the errors are homoskedastic or heteroskedastic.

We next present finite sample local power curves for the bootstrap ADF tests. In order

to keep the number of graphs manageable, we need to make a selection of the ARMA models

considered. To this end we report results for the i.i.d. model (model 1), the AR(1) model

with φ1 = 0.5 (model 4) and the MA(1) model with θ = −0.5 (model 12). We consider the

same type of volatility models as before but focus on the cases where MAIC is most affected

by the volatility process. The simulation results in Section 4.2 showed that for the volatility

model with a single break, MAIC was most affected by a late positive or early negative break,

while for the stochastic volatility model, MAIC was most affected if a unit root was present

in the volatility (c = 0). These cases together with the benchmark of homoskedasticity will

therefore be considered in the power analysis.

Insert Figure 1 about here

In Figure 1 we first present the finite sample local power curves of the wild bootstrap

ADF tests based on MAIC and RSMAIC lag selection for the homoskedastic model. In the

homoskedastic case the power of the tests using MAIC and RSMAIC are almost identical to

one another, which is again as expected given the results from section 4.2. This shows that

the power losses incurred by using the RSMAIC criterion to select the lag length when in fact

the MAIC criterion is correctly specified are negligible even for T = 150.

Inserts Figures 2-3 about here

Figures 2 and 3 give the corresponding local power curves for the single break in variance

model with a late positive break and an early negative break, respectively.9 For these single

break models, the bootstrap ADF test based on the use of RSMAIC is clearly more powerful

than the corresponding test based on MAIC. This is a direct consequence of the results

reported in section 4.2 which showed that the MAIC criterion significantly over-fits the lag

order relative to the RSMAIC criterion for these designs. It is clear that in these cases there

are considerable finite sample power gains available by using RSMAIC. Moreover, the power

9Notice that the local power curves for the single break models are quite different from the corresponding
local power curves seen in Figure 1 under homoskedasticity, even for T = 250. This is not an effect of the lag
order selection method but rather a consequence of the result that if nonstationary volatility is present, then
the limiting distributions of the ADF statistic, tdγ , under both the null hypothesis and local alternatives, and
hence the asymptotic local power function of the associated bootstrap test, are functions of the underlying
volatility process (cf. Cavaliere and Taylor, 2008, p. 8).
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differences between using MAIC and RSMAIC lag selection even increase slightly between

T = 150 and T = 250, which appears to be related to the associated increase in the maximum

lag length, pmax, between the two sample sizes.

Insert Figures 4-5 about here

Figures 4 and 5 graph the finite sample local power curves for the stochastic volatility

models with c = 0 and v = 4, 9. While the bootstrap ADF test based on RSMAIC is still more

powerful than the corresponding test based on MAIC, the difference between the two is now

rather smaller than was seen for the single break in volatility models. This is to be expected

from the results on the average lag length selected by these two criteria in section 4.2, which

showed that RSMAIC has a tendency to over-fit the lag length in this case, although not to

the same extent as is seen with MAIC. While the gains of using RSMAIC may be smaller for

the stochastic volatility case, it is nonetheless important to note that there is never a loss in

power when using RSMAIC rather than MAIC to select the lag length.

We can summarise the results in this subsection by observing that lag order selection based

on MAIC has a negative impact on the finite sample power of the resulting wild bootstrap ADF

unit root test if nonstationary volatility is present, with the extent of this effect depending

on the specific volatility model. Based on our results, we recommend the use of the RSMAIC

lag selection criterion for selecting the lag length in the context of ADF unit root testing,

given its greater degree of robustness to nonstationary volatility than the standard MAIC

lag selection criterion, and the resulting higher finite sample power which is achievable when

using RSMAIC over MAIC. These power gains are most strongly seen for single break in

volatility models. Moreover, under homoskedasticity we found almost no differences in power

between the unit root tests which use RSMAIC and MAIC to select the lag order. Under

all of the volatility and ARMA models considered the finite sample size properties of the

unit root tests based on MAIC and RSMAIC were virtually identical. As such we believe it

provides a reliable practical alternative to MAIC.

We conclude this section by noting that the conclusions drawn above concerning wild boot-

strap ADF tests based on the MAIC lag selection method and its re-scaled analogue, RSMAIC,

all carry through qualitatively to the corresponding ADF tests based other information crite-

ria such as AIC and BIC (where the re-scaling in computing their heteroskedasticity-robust

analogues is done identically). We also considered sequential t-tests for specifying the lag

truncation order, as in Ng and Perron (1995), comparing their standard approach with mod-

ifications thereof based on either the use of White (1980) heteroskedasticity-robust standard

errors or the wild bootstrap. Simulations indicated that sequential t-testing is affected by

nonstationary volatility in much the same way as the information criteria reported here. Us-

ing White standard errors helps to alleviate the problems, but does not erase them. Wild

bootstrap ADF tests using lag selection based on wild bootstrap sequential t-tests, like the
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tests based on the RSMAIC method, achieve higher power than the tests based on the stan-

dard sequential t-tests but have the considerable drawback that they take a very long time to

compute. Moreover, we found them to be generally inferior than the tests based on RSMAIC,

and so we do not report these results in detail. They are, however, available on request.

5 Conclusion

In this paper we have investigated the effect of nonstationary volatility on lag length selection

in the context of unit root testing. We have also proposed a modification of the popular

information criteria used for lag length selection, designed to be robust against nonstationary

volatility. The modification consisted of re-scaling the data by a nonparametric estimate of

the volatility process before computing the information criterion of interest.

Focusing on the popular MAIC criterion, we found that nonstationary volatility can have a

significant impact on lag length selection in finite samples. Simulations were presented which

showed that for several volatility models the lag order was over-fitted, with the selected lag

length being highly dependent on the maximum lag length allowed in certain cases. Our

proposed re-scaled MAIC, labeled RSMAIC, criterion did not demonstrate this feature and

was shown to be robust to nonstationary volatility, most notably to the presence of a break

in volatility. Moreover, the RSMAIC criterion was shown to perform almost identically to

the MAIC criterion in terms of the lag order selected under homoskedasticity.

We then investigated the relative behaviour of the wild bootstrap ADF unit root tests

obtained for these two different lag selection criteria. It was found that using MAIC in the

presence of nonstationary volatility leads to a loss of finite sample power in the associated

unit root test, caused by the tendency of MAIC to fit significantly more lags than RSMAIC.

This despite the fact that size properties of the unit root tests based on MAIC and RSMAIC

lag selection were shown to be broadly comparable. Moreover, under homoskedasticity no

significant losses in power were observed for the unit root tests based on RSMAIC relative to

those based on MAIC.

References

Beare, B. K. (2008). Unit root testing with unstable volatility. Nuffield College Economics

Working Paper No. 2008-06, Oxford University.

Busetti, F. and A. M. R. Taylor (2003). Testing against stochastic trend in the presence of

variance shifts. Journal of Business and Economic Statistics 21, 510–531.

Cavaliere, G. and A. M. R. Taylor (2007). Testing for unit roots in time series models with

non-stationary volatility. Journal of Econometrics 140, 919–947.

15



Cavaliere, G. and A. M. R. Taylor (2008). Bootstrap unit root tests for time series with

nonstationary volatility. Econometric Theory 24, 43–71.

Cavaliere, G. and A. M. R. Taylor (2009a). Bootstrap M unit root tests. Econometric

Reviews 28, 393–421.

Cavaliere, G. and A. M. R. Taylor (2009b). Heteroskedastic time series with a unit root.

Econometric Theory 25, 1228–1276.

Chang, Y. and J. Y. Park (2002). On the asymptotics of ADF tests for unit roots. Econometric

Reviews 21, 431–447.

Elliott, G., T. J. Rothenberg, and J. H. Stock (1996). Efficient tests for an autoregressive

unit root. Econometrica 64, 813–836.

Hamilton, J. D. (1994). Time Series Analysis. Princeton: Princeton University Press.

Kim, C.-J. and C. R. Nelson (1999). Has the US economy become more stable? A Bayesian

approach based on a Markov-switching model of the business cycle. Review of Economics

and Statistics 81, 608–616.

McConnell, M. M. and G. Perez Quiros (2000). Output fluctuations in the United States:

what has changed since the early 1980s? American Economic Review 90, 1464–1476.

Ng, S. and P. Perron (1995). Unit root tests in arma models with data dependent methods

for selection of the truncation lag. Journal of the American Statistical Association 90,

268–281.

Ng, S. and P. Perron (2001). Lag length selection and the construction of unit root tests with

good size and power. Econometrica 69, 1519–1554.

Ng, S. and P. Perron (2005). A note on the selection of time series models. Oxford Bulletinf

of Economics and Statistics 67, 115–134.

Perron, P. and Z. Qu (2007). A simple modification to improve the finite sample properties

of Ng and Perron’s unit root tests. Economics Letters 94, 12–19.

Pötscher, B. M. (1989). Model selection under nonstationarity: autoregessive models and

stochastic linear regression models. Annals of Statistics 17, 1257–1274.

Richard, P. (2009). Modified fast double sieve bootstraps for ADF tests. Computational

Statistics & Data Analysis 53, 4490–4499.

Sensier, M. and D. Van Dijk (2004). Testing for volatility changes in U.S. macroeconomic

time series. Review of Economics and Statistics 86, 833–839.

16



Smeekes, S. and A. M. R. Taylor (2011). Bootstrap union tests for unit roots in the presence

of nonstationary volatility. Econometric Theory , forthcoming.

Stock, J. H. and M. W. Watson (1999). A comparison of linear and nonlinear univariate

models for forecasting macroeconomic time series. In R. F. Engle and H. White (Eds.),

Cointegration, Causality and Forecasting: A Festschrift in Honour of Clive W.J. Granger,

pp. 1–44. Oxford: Oxford University Press.

Tsay, R. S. (1984). Order selection in nonstationary autoregressive models. Annals of Statis-

tics 12, 1425–1433.

Van Dijk, D., D. R. Osborn, and M. Sensier (2002). Changes in variability of the business

cycle in the G7 countries. Econometric Institute Report EI 2002-28, Erasmus University

Rotterdam.

White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct

test for heteroskedasticity. Econometrica 48, 817–838.

Xu, K.-L. and P. C. B. Phillips (2011). Tilted nonparametric estimation of volatility functions

with empirical applications. Journal of Business and Economic Statistics 29, 518–528.

17



Table 1: ARMA models considered

Model p0 β1 β2 β3 θ

1 0 0.00 0.00 0.00 0.00
2 1 -0.80 0.00 0.00 0.00
3 1 -0.50 0.00 0.00 0.00
4 1 0.50 0.00 0.00 0.00
5 1 0.80 0.00 0.00 0.00
6 2 0.40 0.20 0.00 0.00
7 2 1.10 -0.35 0.00 0.00
8 2 1.30 -0.35 0.00 0.00
9 3 0.30 0.20 0.10 0.00
10 3 0.10 0.20 0.30 0.00
11 ∞ 0.00 0.00 0.00 -0.80
12 ∞ 0.00 0.00 0.00 -0.50
13 ∞ 0.00 0.00 0.00 0.50
14 ∞ 0.00 0.00 0.00 0.80
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Table 2: Average lags selected; homoskedasticity

A = 6 A = 12

T = 150 T = 250 T = 150 T = 250

Model c MAIC RSMAIC MAIC RSMAIC MAIC RSMAIC MAIC RSMAIC

1 0 0.57 0.54 0.67 0.69 0.76 0.69 0.85 0.82
2 1.59 1.63 1.65 1.69 1.85 1.95 1.90 1.98
3 1.57 1.54 1.61 1.60 1.82 1.79 1.84 1.81
4 1.57 1.62 1.62 1.75 1.79 1.86 1.82 1.99
5 1.55 1.70 1.62 1.86 1.76 2.03 1.83 2.25
6 2.20 2.23 2.49 2.56 2.47 2.52 2.76 2.89
7 2.49 2.58 2.56 2.64 2.80 2.96 2.82 3.06
8 2.50 2.79 2.56 2.96 2.78 3.50 2.82 3.81
9 2.56 2.53 2.94 2.98 2.83 2.85 3.20 3.36
10 3.34 3.35 3.49 3.55 3.66 3.72 3.82 3.94
11 5.21 5.21 6.21 6.22 7.54 7.56 8.62 8.61
12 3.00 2.98 3.40 3.38 3.37 3.32 3.75 3.67
13 2.70 2.69 3.18 3.17 3.02 3.00 3.47 3.52
14 4.82 4.79 5.75 5.74 5.94 5.91 7.20 7.23

1 7 0.75 0.71 0.76 0.71 0.96 0.91 1.01 0.93
2 1.85 1.92 1.86 1.89 2.33 2.43 2.18 2.27
3 1.73 1.72 1.77 1.75 2.06 2.05 2.07 2.05
4 1.64 1.61 1.71 1.68 1.92 1.83 1.97 1.89
5 1.63 1.61 1.68 1.69 1.94 1.90 1.94 1.95
6 2.03 1.97 2.43 2.39 2.37 2.25 2.72 2.65
7 2.59 2.59 2.66 2.65 2.97 2.94 2.98 2.96
8 2.54 2.62 2.63 2.75 2.88 3.02 2.93 3.16
9 2.13 2.08 2.66 2.63 2.40 2.31 3.02 2.95
10 3.15 3.07 3.54 3.52 3.60 3.42 3.93 3.84
11 5.06 5.05 6.34 6.34 8.35 8.34 9.97 10.01
12 3.45 3.43 3.86 3.86 4.12 4.09 4.40 4.40
13 2.67 2.62 3.05 3.02 3.03 2.96 3.42 3.33
14 4.69 4.66 5.47 5.46 5.74 5.66 7.04 6.98
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Table 3: Average lags selected; single break: σ0/σ1 = 1/3 and τ = 0.2

A = 6 A = 12

T = 150 T = 250 T = 150 T = 250

Model c MAIC RSMAIC MAIC RSMAIC MAIC RSMAIC MAIC RSMAIC

1 0 0.82 0.70 0.95 0.84 1.08 0.86 1.29 1.08
2 1.76 1.75 1.86 1.80 2.12 2.11 2.24 2.14
3 1.76 1.66 1.89 1.77 2.11 1.91 2.28 2.07
4 1.74 1.70 1.86 1.81 2.05 1.98 2.25 2.14
5 1.76 1.81 1.88 1.92 2.10 2.20 2.23 2.36
6 2.33 2.30 2.68 2.66 2.73 2.63 3.17 3.11
7 2.64 2.64 2.72 2.74 3.05 3.06 3.15 3.22
8 2.63 2.79 2.81 2.99 3.02 3.59 3.26 3.80
9 2.68 2.61 3.09 3.04 3.13 3.00 3.57 3.52
10 3.43 3.40 3.66 3.64 3.89 3.81 4.24 4.17
11 5.17 5.17 6.15 6.16 7.64 7.53 8.74 8.57
12 3.08 2.98 3.53 3.44 3.59 3.36 4.11 3.88
13 2.83 2.76 3.29 3.22 3.29 3.14 3.78 3.62
14 4.84 4.80 5.73 5.72 6.17 5.98 7.42 7.29

1 7 0.93 0.78 1.09 0.92 1.27 1.02 1.53 1.20
2 1.98 1.99 2.10 2.03 2.54 2.49 2.67 2.55
3 1.92 1.84 2.04 1.90 2.42 2.24 2.54 2.28
4 1.86 1.73 1.89 1.78 2.26 2.05 2.40 2.15
5 1.78 1.72 1.99 1.91 2.19 2.02 2.46 2.29
6 2.15 2.01 2.62 2.50 2.59 2.34 3.15 2.88
7 2.75 2.67 2.84 2.75 3.22 3.08 3.44 3.24
8 2.68 2.70 2.84 2.86 3.18 3.18 3.38 3.49
9 2.17 2.04 2.84 2.71 2.55 2.31 3.41 3.12
10 3.13 2.96 3.67 3.58 3.60 3.28 4.30 4.03
11 4.99 4.98 6.28 6.29 8.31 8.20 10.03 10.00
12 3.47 3.42 3.96 3.90 4.33 4.13 4.77 4.54
13 2.79 2.66 3.22 3.07 3.34 3.06 3.87 3.54
14 4.70 4.64 5.48 5.43 5.89 5.62 7.29 7.02
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Table 4: Average lags selected; single break: δ = 1/3 and τ = 0.8

A = 6 A = 12

T = 150 T = 250 T = 150 T = 250

Model c MAIC RSMAIC MAIC RSMAIC MAIC RSMAIC MAIC RSMAIC

1 0 2.37 0.71 2.99 0.84 4.75 0.91 6.31 1.04
2 2.92 1.73 3.53 1.81 5.24 2.13 6.75 2.16
3 2.89 1.61 3.52 1.74 5.31 1.88 6.95 2.04
4 2.92 1.69 3.50 1.82 5.33 1.97 6.80 2.19
5 2.90 1.88 3.49 2.04 5.25 2.34 6.80 2.63
6 3.18 2.28 3.84 2.66 5.50 2.62 7.06 3.15
7 3.40 2.67 4.03 2.80 5.65 3.11 7.33 3.32
8 3.51 2.99 4.05 3.22 5.98 4.06 7.45 4.42
9 3.32 2.57 4.09 3.04 5.70 2.95 7.41 3.49
10 3.82 3.34 4.54 3.64 6.24 3.81 7.79 4.19
11 4.98 5.19 6.04 6.20 8.39 7.47 10.26 8.70
12 3.64 3.02 4.34 3.44 6.03 3.45 7.67 3.85
13 3.42 2.70 4.23 3.21 5.75 3.06 7.55 3.64
14 4.78 4.75 5.76 5.70 7.59 5.87 9.51 7.24

1 7 2.22 0.82 2.83 0.91 4.37 1.11 5.81 1.18
2 2.88 2.10 3.35 2.06 5.09 2.76 6.36 2.60
3 2.82 1.88 3.36 1.87 5.04 2.32 6.44 2.28
4 2.75 1.71 3.33 1.86 4.92 2.03 6.32 2.22
5 2.80 1.73 3.36 1.86 4.89 2.05 6.45 2.25
6 2.86 2.01 3.63 2.50 5.03 2.33 6.64 2.88
7 3.49 2.67 3.96 2.78 5.65 3.16 7.04 3.19
8 3.43 2.76 3.97 2.95 5.64 3.34 6.93 3.61
9 2.86 2.11 3.76 2.74 5.12 2.45 6.79 3.14
10 3.44 2.99 4.36 3.58 5.55 3.39 7.41 4.03
11 4.70 5.06 6.02 6.32 8.34 8.32 10.51 10.10
12 3.80 3.51 4.55 3.90 6.09 4.24 7.70 4.65
13 3.37 2.66 4.05 3.08 5.44 3.09 7.17 3.59
14 4.63 4.62 5.54 5.49 7.19 5.74 9.16 7.10
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Table 5: Average lags selected; single break: δ = 3 and τ = 0.2

A = 6 A = 12

T = 150 T = 250 T = 150 T = 250

Model c MAIC RSMAIC MAIC RSMAIC MAIC RSMAIC MAIC RSMAIC

1 0 2.38 0.65 3.07 0.76 4.84 0.86 6.46 0.97
2 2.93 1.76 3.53 1.78 5.23 2.13 6.82 2.18
3 2.95 1.60 3.50 1.70 5.29 1.88 6.87 1.97
4 2.95 1.63 3.53 1.76 5.33 1.91 6.95 2.09
5 2.89 1.76 3.58 1.93 5.42 2.19 6.89 2.36
6 3.15 2.27 3.90 2.61 5.60 2.62 7.26 3.01
7 3.45 2.60 3.99 2.73 5.88 3.02 7.26 3.18
8 3.42 2.81 4.01 3.06 5.88 3.66 7.33 4.00
9 3.33 2.55 4.10 2.98 5.67 2.94 7.33 3.40
10 3.87 3.35 4.59 3.62 6.24 3.77 7.91 4.10
11 4.99 5.22 6.10 6.24 8.50 7.78 10.41 8.93
12 3.67 3.04 4.35 3.46 6.15 3.42 7.71 3.83
13 3.52 2.77 4.24 3.18 5.86 3.05 7.61 3.57
14 4.89 4.84 5.83 5.75 7.86 6.02 9.71 7.30

1 7 2.25 0.81 2.88 0.85 4.42 1.01 6.14 1.19
2 2.83 1.98 3.45 2.04 5.11 2.50 6.60 2.52
3 2.83 1.79 3.39 1.83 5.01 2.16 6.47 2.17
4 2.79 1.70 3.42 1.79 4.88 1.95 6.64 2.13
5 2.84 1.70 3.41 1.83 5.03 2.06 6.55 2.15
6 2.94 2.09 3.71 2.53 5.05 2.41 6.78 2.86
7 3.41 2.64 3.94 2.73 5.64 3.08 7.07 3.16
8 3.43 2.70 3.95 2.83 5.59 3.27 6.96 3.45
9 2.96 2.29 3.77 2.79 5.17 2.58 6.94 3.17
10 3.63 3.18 4.46 3.56 5.83 3.59 7.57 3.96
11 4.82 5.21 6.08 6.33 8.57 8.49 10.57 9.85
12 3.82 3.42 4.59 3.82 6.02 4.04 7.74 4.40
13 3.38 2.70 4.10 3.14 5.53 3.06 7.39 3.56
14 4.78 4.78 5.59 5.59 7.45 5.96 9.44 7.27
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Table 6: Average lags selected; single break: δ = 3 and τ = 0.8

A = 6 A = 12

T = 150 T = 250 T = 150 T = 250

Model c MAIC RSMAIC MAIC RSMAIC MAIC RSMAIC MAIC RSMAIC

1 0 0.87 0.71 1.00 0.82 1.31 0.93 1.43 1.05
2 1.81 1.75 1.92 1.83 2.27 2.13 2.41 2.21
3 1.76 1.64 1.87 1.74 2.23 1.95 2.34 1.99
4 1.75 1.69 1.87 1.80 2.21 1.97 2.38 2.15
5 1.77 1.83 1.88 1.99 2.19 2.18 2.41 2.50
6 2.34 2.30 2.67 2.64 2.80 2.62 3.20 3.02
7 2.64 2.66 2.77 2.79 3.17 3.09 3.32 3.23
8 2.62 2.83 2.76 3.03 3.12 3.53 3.34 3.91
9 2.68 2.62 3.12 3.09 3.11 2.94 3.72 3.58
10 3.43 3.40 3.65 3.62 4.03 3.82 4.25 4.12
11 5.19 5.21 6.19 6.21 7.64 7.64 8.90 8.79
12 3.10 3.04 3.55 3.48 3.71 3.44 4.21 3.92
13 2.83 2.73 3.29 3.20 3.38 3.07 3.88 3.62
14 4.85 4.83 5.78 5.74 6.25 6.04 7.56 7.38

1 7 0.93 0.71 1.04 0.81 1.39 0.94 1.50 1.05
2 1.99 1.93 2.01 1.93 2.56 2.42 2.62 2.39
3 1.90 1.74 1.99 1.80 2.43 2.13 2.51 2.12
4 1.85 1.63 1.99 1.79 2.27 1.90 2.46 2.03
5 1.83 1.66 1.96 1.80 2.32 1.96 2.50 2.11
6 2.12 1.99 2.64 2.48 2.62 2.29 3.24 2.86
7 2.74 2.60 2.82 2.70 3.31 3.01 3.42 3.08
8 2.70 2.67 2.83 2.82 3.25 3.15 3.44 3.36
9 2.25 2.15 2.81 2.70 2.74 2.44 3.33 3.01
10 3.21 3.11 3.69 3.56 3.82 3.48 4.35 3.94
11 5.05 5.06 6.27 6.30 8.24 8.23 10.04 10.01
12 3.47 3.39 3.92 3.82 4.29 4.02 4.74 4.43
13 2.79 2.65 3.22 3.08 3.40 3.01 3.89 3.48
14 4.71 4.67 5.54 5.52 5.93 5.63 7.45 7.11
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Table 7: Average lags selected; stochastic volatility: c = 0 and v = 4

A = 6 A = 12

T = 150 T = 250 T = 150 T = 250

Model c MAIC RSMAIC MAIC RSMAIC MAIC RSMAIC MAIC RSMAIC

1 0 2.27 0.98 2.96 1.21 4.28 1.32 5.98 1.66
2 2.86 2.04 3.44 2.26 4.90 2.63 6.27 2.94
3 2.81 1.89 3.48 2.13 4.80 2.30 6.38 2.69
4 2.78 1.92 3.50 2.22 4.90 2.30 6.38 2.80
5 2.83 2.08 3.47 2.43 4.93 2.71 6.37 3.31
6 3.06 2.42 3.89 2.90 5.17 2.92 6.90 3.61
7 3.39 2.83 3.97 3.12 5.44 3.40 6.95 3.92
8 3.42 3.10 4.00 3.46 5.55 4.12 7.07 4.99
9 3.34 2.74 4.09 3.25 5.34 3.23 6.98 3.98
10 3.86 3.45 4.51 3.86 5.95 4.05 7.57 4.73
11 4.93 5.14 6.02 6.14 8.21 7.67 10.02 8.90
12 3.63 3.13 4.35 3.63 5.72 3.66 7.33 4.29
13 3.50 2.88 4.26 3.44 5.53 3.35 7.25 4.12
14 4.81 4.80 5.81 5.75 7.50 6.07 9.38 7.57

1 7 2.15 1.06 2.85 1.29 4.12 1.42 5.56 1.75
2 2.81 2.21 3.37 2.40 4.80 2.97 6.22 3.30
3 2.77 1.98 3.33 2.16 4.74 2.48 6.12 2.79
4 2.79 1.88 3.36 2.09 4.67 2.25 6.17 2.55
5 2.77 1.95 3.36 2.21 4.68 2.43 6.02 2.79
6 2.86 2.20 3.64 2.73 4.84 2.63 6.45 3.32
7 3.38 2.79 3.92 3.00 5.35 3.31 6.66 3.63
8 3.38 2.89 3.99 3.20 5.32 3.70 6.73 4.23
9 2.90 2.33 3.88 3.01 4.81 2.70 6.63 3.60
10 3.53 3.15 4.38 3.72 5.51 3.61 7.17 4.33
11 4.70 5.04 6.02 6.27 8.30 8.27 10.42 9.95
12 3.79 3.47 4.50 3.96 5.84 4.24 7.29 4.85
13 3.30 2.79 4.10 3.30 5.27 3.29 6.85 3.93
14 4.75 4.71 5.54 5.55 7.14 5.89 9.02 7.34
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Table 8: Average lags selected; stochastic volatility: c = 10 and v = 4

A = 6 A = 12

T = 150 T = 250 T = 150 T = 250

Model c MAIC RSMAIC MAIC RSMAIC MAIC RSMAIC MAIC RSMAIC

1 0 1.23 0.81 1.63 1.00 1.75 1.02 2.41 1.25
2 2.10 1.81 2.39 1.97 2.69 2.18 3.22 2.33
3 2.08 1.69 2.39 1.88 2.71 1.96 3.19 2.17
4 2.04 1.76 2.30 1.96 2.67 2.03 3.17 2.31
5 2.05 1.93 2.35 2.14 2.59 2.28 3.15 2.71
6 2.51 2.33 2.98 2.75 3.10 2.64 3.79 3.19
7 2.83 2.67 3.11 2.92 3.45 3.10 3.98 3.41
8 2.82 2.95 3.16 3.24 3.46 3.78 4.12 4.31
9 2.81 2.62 3.32 3.12 3.44 2.98 4.21 3.58
10 3.51 3.38 3.92 3.72 4.17 3.78 4.90 4.24
11 5.12 5.18 6.15 6.18 7.71 7.55 8.96 8.64
12 3.21 2.99 3.74 3.48 3.87 3.31 4.72 3.89
13 2.96 2.73 3.52 3.24 3.53 3.01 4.49 3.65
14 4.84 4.83 5.78 5.74 6.27 5.93 7.80 7.27

1 7 1.32 0.86 1.60 0.99 1.92 1.05 2.44 1.29
2 2.17 2.03 2.43 2.10 2.92 2.56 3.41 2.65
3 2.13 1.83 2.37 1.96 2.85 2.22 3.23 2.30
4 2.10 1.73 2.41 1.93 2.72 1.99 3.27 2.26
5 2.09 1.76 2.36 1.94 2.65 2.07 3.19 2.28
6 2.24 2.02 2.87 2.53 2.88 2.31 3.80 2.91
7 2.91 2.70 3.18 2.86 3.58 3.08 4.11 3.34
8 2.83 2.72 3.14 2.96 3.46 3.22 4.09 3.59
9 2.37 2.14 3.10 2.81 3.01 2.43 4.02 3.17
10 3.25 3.07 3.90 3.63 3.94 3.38 4.87 4.01
11 4.97 5.06 6.22 6.31 8.19 8.20 10.07 9.97
12 3.56 3.45 4.07 3.88 4.58 4.15 5.19 4.50
13 2.90 2.67 3.43 3.15 3.61 3.01 4.47 3.58
14 4.67 4.64 5.50 5.47 6.00 5.64 7.55 7.02
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Table 9: Average lags selected; stochastic volatility: c = 0 and v = 9

A = 6 A = 12

T = 150 T = 250 T = 150 T = 250

Model c MAIC RSMAIC MAIC RSMAIC MAIC RSMAIC MAIC RSMAIC

1 0 3.33 2.19 4.44 3.06 6.41 3.29 8.87 5.01
2 3.58 2.99 4.64 3.72 6.61 4.43 9.18 6.12
3 3.66 2.83 4.68 3.60 6.64 4.13 9.15 5.75
4 3.63 2.81 4.66 3.59 6.69 4.11 9.23 5.72
5 3.72 3.01 4.75 3.86 6.78 4.40 9.32 6.31
6 3.72 3.07 4.84 3.96 6.78 4.34 9.29 6.14
7 3.95 3.40 4.94 4.20 7.13 4.81 9.46 6.47
8 4.06 3.69 5.00 4.53 7.27 5.61 9.76 7.55
9 3.84 3.24 4.92 4.12 6.95 4.52 9.48 6.34
10 4.18 3.77 5.12 4.54 7.25 5.08 9.54 6.77
11 4.54 4.93 5.72 6.02 8.14 7.84 10.45 9.65
12 3.97 3.53 4.97 4.35 7.07 4.92 9.35 6.53
13 3.95 3.36 4.92 4.14 6.94 4.55 9.36 6.25
14 4.82 4.82 5.81 5.76 8.33 6.74 10.42 8.57

1 7 3.19 2.23 4.34 3.05 6.13 3.48 8.64 5.12
2 3.47 3.08 4.46 3.83 6.39 4.78 8.82 6.42
3 3.54 2.88 4.50 3.57 6.47 4.26 8.81 5.77
4 3.50 2.71 4.50 3.48 6.41 3.88 8.83 5.59
5 3.61 2.86 4.59 3.62 6.54 4.19 9.09 5.77
6 3.54 2.91 4.63 3.80 6.56 4.11 9.01 5.83
7 3.89 3.39 4.77 4.08 6.81 4.68 9.07 6.21
8 4.02 3.54 4.90 4.31 7.10 5.29 9.38 7.06
9 3.56 3.02 4.67 3.96 6.61 4.26 8.99 5.97
10 3.91 3.56 4.99 4.43 6.87 4.78 9.31 6.53
11 4.37 4.93 5.70 6.08 8.11 8.21 10.62 10.21
12 3.98 3.69 4.90 4.43 6.93 5.26 9.07 6.71
13 3.79 3.33 4.81 4.10 6.74 4.55 9.11 6.21
14 4.75 4.78 5.61 5.66 7.97 6.64 10.32 8.56
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Table 10: Average lags selected; stochastic volatility: c = 10 and v = 9

A = 6 A = 12

T = 150 T = 250 T = 150 T = 250

Model c MAIC RSMAIC MAIC RSMAIC MAIC RSMAIC MAIC RSMAIC

1 0 2.51 1.33 3.46 2.00 3.80 1.59 5.66 2.55
2 2.97 2.31 3.82 2.87 4.31 2.75 6.27 3.71
3 2.94 2.08 3.81 2.68 4.24 2.41 6.22 3.28
4 2.93 2.14 3.88 2.75 4.20 2.48 6.24 3.40
5 3.00 2.37 3.85 3.06 4.38 2.85 6.25 4.09
6 3.17 2.55 4.08 3.28 4.41 2.91 6.46 4.05
7 3.48 2.99 4.27 3.54 4.79 3.47 6.77 4.49
8 3.48 3.26 4.32 3.96 4.78 4.15 6.80 5.53
9 3.31 2.75 4.27 3.56 4.61 3.09 6.65 4.34
10 3.85 3.49 4.68 4.09 5.20 3.89 7.06 4.95
11 5.01 5.14 6.05 6.12 7.88 7.44 9.58 8.77
12 3.62 3.15 4.52 3.81 5.03 3.61 6.86 4.55
13 3.47 2.95 4.37 3.62 4.76 3.32 6.76 4.38
14 4.86 4.80 5.80 5.72 6.85 5.91 8.95 7.53

1 7 2.26 1.26 3.21 1.87 3.42 1.52 5.49 2.40
2 2.91 2.37 3.70 2.92 4.25 2.90 5.92 3.75
3 2.79 2.14 3.60 2.59 4.04 2.50 5.86 3.24
4 2.80 2.01 3.67 2.56 4.05 2.29 5.95 3.11
5 2.89 2.18 3.75 2.77 4.18 2.56 6.05 3.51
6 2.87 2.25 3.87 3.02 4.02 2.50 6.19 3.69
7 3.37 2.90 4.11 3.33 4.62 3.29 6.36 4.09
8 3.46 3.04 4.25 3.68 4.84 3.66 6.53 4.80
9 2.87 2.36 3.99 3.22 4.13 2.63 6.40 3.92
10 3.53 3.19 4.53 3.90 4.79 3.54 6.84 4.60
11 4.66 5.01 5.95 6.19 7.87 8.07 10.16 9.74
12 3.75 3.50 4.52 4.04 5.12 4.08 6.85 4.91
13 3.33 2.79 4.23 3.49 4.54 3.12 6.53 4.17
14 4.67 4.63 5.52 5.50 6.46 5.55 8.55 7.21
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Table 11: Size; homoskedasticity

T = 150 T = 250

Model MAIC RSMAIC MAIC RSMAIC

1 0.046 0.045 0.053 0.051
2 0.047 0.041 0.047 0.045
3 0.044 0.044 0.050 0.049
4 0.049 0.057 0.053 0.052
5 0.051 0.051 0.051 0.050
6 0.043 0.042 0.049 0.047
7 0.056 0.051 0.049 0.048
8 0.051 0.052 0.047 0.046
9 0.041 0.035 0.040 0.039
10 0.054 0.052 0.053 0.053
11 0.101 0.098 0.089 0.090
12 0.041 0.059 0.056 0.054
13 0.049 0.046 0.048 0.046
14 0.041 0.040 0.039 0.040

28



Table 12: Size; single break

δ = 1/3 δ = 3

T = 150 T = 250 T = 150 T = 250

Model τ MAIC RSMAIC MAIC RSMAIC MAIC RSMAIC MAIC RSMAIC

1 0.2 0.056 0.052 0.052 0.049 0.052 0.053 0.046 0.053
2 0.046 0.047 0.052 0.048 0.045 0.050 0.039 0.045
3 0.049 0.046 0.050 0.047 0.045 0.058 0.044 0.051
4 0.050 0.049 0.052 0.053 0.041 0.063 0.055 0.053
5 0.054 0.051 0.051 0.050 0.047 0.054 0.054 0.059
6 0.041 0.038 0.045 0.042 0.051 0.053 0.051 0.052
7 0.053 0.050 0.052 0.052 0.052 0.053 0.054 0.056
8 0.052 0.049 0.052 0.051 0.042 0.047 0.052 0.056
9 0.036 0.034 0.045 0.042 0.045 0.041 0.050 0.052
10 0.049 0.044 0.049 0.048 0.048 0.053 0.058 0.061
11 0.103 0.102 0.089 0.078 0.098 0.106 0.059 0.071
12 0.067 0.061 0.056 0.053 0.054 0.061 0.046 0.061
13 0.041 0.038 0.045 0.042 0.054 0.053 0.052 0.054
14 0.040 0.039 0.043 0.036 0.057 0.060 0.056 0.057

1 0.8 0.048 0.074 0.051 0.051 0.047 0.045 0.047 0.047
2 0.046 0.049 0.051 0.053 0.046 0.045 0.050 0.049
3 0.050 0.050 0.047 0.055 0.045 0.042 0.052 0.052
4 0.054 0.067 0.052 0.061 0.048 0.047 0.054 0.052
5 0.049 0.051 0.046 0.049 0.050 0.047 0.053 0.052
6 0.051 0.053 0.050 0.054 0.045 0.044 0.047 0.049
7 0.052 0.060 0.047 0.054 0.057 0.054 0.047 0.048
8 0.038 0.041 0.051 0.054 0.046 0.048 0.049 0.049
9 0.040 0.043 0.041 0.045 0.040 0.039 0.047 0.048
10 0.047 0.054 0.049 0.051 0.052 0.049 0.050 0.049
11 0.118 0.117 0.087 0.098 0.096 0.093 0.079 0.077
12 0.075 0.085 0.053 0.062 0.064 0.061 0.055 0.057
13 0.048 0.046 0.050 0.048 0.040 0.043 0.043 0.043
14 0.046 0.053 0.044 0.047 0.048 0.047 0.052 0.048
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Table 13: Size; stochastic volatility

c = 0 c = 10

T = 150 T = 250 T = 150 T = 250

Model v MAIC RSMAIC MAIC RSMAIC MAIC RSMAIC MAIC RSMAIC

1 4 0.050 0.049 0.051 0.052 0.048 0.045 0.053 0.051
2 0.046 0.047 0.046 0.047 0.052 0.048 0.046 0.045
3 0.056 0.054 0.051 0.049 0.051 0.048 0.045 0.046
4 0.048 0.055 0.052 0.055 0.050 0.049 0.051 0.050
5 0.054 0.059 0.057 0.059 0.049 0.049 0.044 0.042
6 0.048 0.050 0.051 0.057 0.044 0.047 0.050 0.046
7 0.050 0.050 0.047 0.048 0.048 0.047 0.050 0.047
8 0.048 0.052 0.047 0.050 0.047 0.045 0.046 0.044
9 0.046 0.043 0.050 0.046 0.038 0.036 0.043 0.044
10 0.048 0.048 0.055 0.053 0.046 0.048 0.052 0.055
11 0.117 0.111 0.083 0.084 0.106 0.106 0.086 0.085
12 0.065 0.067 0.056 0.060 0.059 0.062 0.065 0.069
13 0.050 0.050 0.049 0.048 0.046 0.044 0.044 0.046
14 0.049 0.048 0.050 0.051 0.039 0.040 0.050 0.046

1 9 0.057 0.057 0.051 0.050 0.048 0.050 0.046 0.050
2 0.057 0.055 0.050 0.051 0.049 0.049 0.044 0.044
3 0.051 0.052 0.052 0.054 0.053 0.049 0.048 0.049
4 0.050 0.053 0.053 0.059 0.044 0.051 0.043 0.048
5 0.052 0.050 0.042 0.050 0.045 0.049 0.046 0.046
6 0.048 0.045 0.050 0.054 0.042 0.046 0.051 0.054
7 0.052 0.048 0.055 0.061 0.049 0.049 0.047 0.049
8 0.044 0.049 0.046 0.047 0.041 0.042 0.040 0.041
9 0.038 0.046 0.044 0.046 0.039 0.043 0.042 0.048
10 0.043 0.052 0.049 0.056 0.047 0.048 0.043 0.046
11 0.136 0.106 0.088 0.084 0.107 0.099 0.084 0.084
12 0.065 0.059 0.049 0.056 0.060 0.061 0.054 0.056
13 0.049 0.054 0.046 0.045 0.049 0.048 0.047 0.050
14 0.050 0.052 0.053 0.055 0.045 0.041 0.049 0.049
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(a) T = 150, ARMA model 1 (b) T = 250, ARMA model 1

(c) T = 150, ARMA model 4 (d) T = 250, ARMA model 4

(e) T = 150, ARMA model 12 (f) T = 250, ARMA model 12

Figure 1: Power ADF-GLS test; constant, homoskedasticity
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(a) T = 150, ARMA model 1 (b) T = 250, ARMA model 1

(c) T = 150, ARMA model 4 (d) T = 250, ARMA model 4

(e) T = 150, ARMA model 12 (f) T = 250, ARMA model 12

Figure 2: Power ADF-GLS test; single break: δ = 1/3, τ = 0.8
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(a) T = 150, ARMA model 1 (b) T = 250, ARMA model 1

(c) T = 150, ARMA model 4 (d) T = 250, ARMA model 4

(e) T = 150, ARMA model 12 (f) T = 250, ARMA model 12

Figure 3: Power ADF-GLS test; single break: δ = 3, τ = 0.2
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(a) T = 150, ARMA model 1 (b) T = 250, ARMA model 1

(c) T = 150, ARMA model 4 (d) T = 250, ARMA model 4

(e) T = 150, ARMA model 12 (f) T = 250, ARMA model 12

Figure 4: Power ADF-GLS test; stochastic volatility: c = 0, v = 4
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(a) T = 150, ARMA model 1 (b) T = 250, ARMA model 1

(c) T = 150, ARMA model 4 (d) T = 250, ARMA model 4

(e) T = 150, ARMA model 12 (f) T = 250, ARMA model 12

Figure 5: Power ADF-GLS test; stochastic volatility: c = 0, v = 9
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