1,702 research outputs found

    Entanglement and Dynamic Stability of Nash Equilibria in a Symmetric Quantum Game

    Full text link
    We study the evolutionary stability of Nash equilibria (NE) in a symmetric quantum game played by the recently proposed scheme of applying `identity' and `Pauli spin flip' operators on the initial state with classical probabilities. We show that in this symmetric game dynamic stability of a NE can be changed when the game changes its form, for example, from classical to quantum. It happens even when the NE remains intact in both forms.Comment: Latex,no figure,submitted to Physics Letters

    High Resolution OI (630 nm) Image Measurements of Fregion Depletion Drifts During the Guara Campaign

    Get PDF
    A high performance, all‐sky, imaging system has provided data on the evolution and drift motions of F‐region depletions above the magnetic dip equator at AlcĂąntara, Brazil, (2.3°S, 44.5°W). Monochromatic images of depletions in the OI(630 nm) nightglow were recorded on eight nights during 1‐16 October, 1994, as part of the GuarĂĄ campaign. The drift motions of the depletions were typically 80–100 m/s eastward prior to local midnight and reduced to a minimum of ∌30–50 m/s in the morning hours, in accord with previous observations. However, on October 2–3 and 12–13 the depletions were observed to reverse direction for ∌60–90 min, achieving westward speeds of ∌30 m/s before the motion reverted to eastward around 0100 LT and accelerated to 35–45 m/s near dawn. Magnetic activity and other evidence suggests that these reversals in the motion of the airglow depletions probably result from reversals in the F‐region dynamo rather than from shifts in the altitude of the shear in the nighttime F‐region plasma drift

    Varieties of distributive rotational lattices

    Get PDF
    A rotational lattice is a structure (L;\vee,\wedge, g) where L=(L;\vee,\wedge) is a lattice and g is a lattice automorphism of finite order. We describe the subdirectly irreducible distributive rotational lattices. Using J\'onsson's lemma, this leads to a description of all varieties of distributive rotational lattices.Comment: 7 page

    Darkness visible: reflections on underground ecology

    Get PDF
    1 Soil science and ecology have developed independently, making it difficult for ecologists to contribute to urgent current debates on the destruction of the global soil resource and its key role in the global carbon cycle. Soils are believed to be exceptionally biodiverse parts of ecosystems, a view confirmed by recent data from the UK Soil Biodiversity Programme at Sourhope, Scotland, where high diversity was a characteristic of small organisms, but not of larger ones. Explaining this difference requires knowledge that we currently lack about the basic biology and biogeography of micro-organisms. 2 It seems inherently plausible that the high levels of biological diversity in soil play some part in determining the ability of soils to undertake ecosystem-level processes, such as carbon and mineral cycling. However, we lack conceptual models to address this issue, and debate about the role of biodiversity in ecosystem processes has centred around the concept of functional redundancy, and has consequently been largely semantic. More precise construction of our experimental questions is needed to advance understanding. 3 These issues are well illustrated by the fungi that form arbuscular mycorrhizas, the Glomeromycota. This ancient symbiosis of plants and fungi is responsible for phosphate uptake in most land plants, and the phylum is generally held to be species-poor and non-specific, with most members readily colonizing any plant species. Molecular techniques have shown both those assumptions to be unsafe, raising questions about what factors have promoted diversification in these fungi. One source of this genetic diversity may be functional diversity. 4 Specificity of the mycorrhizal interaction between plants and fungi would have important ecosystem consequences. One example would be in the control of invasiveness in introduced plant species: surprisingly, naturalized plant species in Britain are disproportionately from mycorrhizal families, suggesting that these fungi may play a role in assisting invasion. 5 What emerges from an attempt to relate biodiversity and ecosystem processes in soil is our extraordinary ignorance about the organisms involved. There are fundamental questions that are now answerable with new techniques and sufficient will, such as how biodiverse are natural soils? Do microbes have biogeography? Are there rare or even endangered microbes

    Comparing multiscale, presence-only habitat suitability models created with structured survey data and community science data for a rare warbler species at the southern range margin

    Get PDF
    Golden-winged Warblers (Vermivora chrysoptera, Parulidae) are declining migrant songbirds that breed in the Great Lakes and Appalachian regions of North America. Within their breeding range, Golden-winged Warblers are found in early successional habitats adjacent to mature hardwood forest, and previous work has found that Golden-winged Warbler habitat preferences are scale-dependent. Golden-winged Warbler Working Group management recommendations were written to apply to large regions of the breeding range, but there may be localized differences in both habitat availability and preferences. Rapid declines at the southernmost extent of their breeding range in Western North Carolina necessitate investigation into landscape characteristics governing distribution in this subregion. Furthermore, with the increase in availability of community science data from platforms such as eBird, it would be valuable to know if community science data produces similar distribution models as systemic sampling data. In this study, we described patterns of Golden-winged Warbler presence in Western North Carolina by examining habitat variables at multiple spatial scales using data from standardized Audubon North Carolina (NC) playback surveys and community science data from eBird. We compared model performance and predictions between Audubon NC and eBird models and found that Golden-winged Warbler presence is associated with sites which, at a local scale (150m), have less mature forest, more young forest, more herb/shrub cover, and more road cover, and at a landscape scale (2500m), have less herb/shrub cover. Golden-winged Warbler presence is also associated with higher elevations and smaller slopes. eBird and Audubon models had similar variable importance values, response curves, and overall performance. Based on variable importance values, elevation, mature forest at the local scale, and road cover at the local scale are the primary variables driving the difference between Golden-winged Warbler breeding sites and random background sites in Western North Carolina. Additionally, our results validate the use of eBird data, since they produce species distribution modeling results that are similar to results obtained from more standardized survey methods

    The subelliptic heat kernel on SU(2): Representations, Asymptotics and Gradient bounds

    Full text link
    The Lie group SU(2) endowed with its canonical subriemannian structure appears as a three-dimensional model of a positively curved subelliptic space. The goal of this work is to study the subelliptic heat kernel on it and some related functional inequalities.Comment: Update: Added section + Correction of typo

    Thermal and Chemical Equilibration in Relativistic Heavy Ion Collisions

    Full text link
    We investigate the thermalization and the chemical equilibration of a parton plasma created from Au+Au collision at LHC and RHIC energies starting from the early moment when the particle momentum distributions in the central region become for the first time isotropic due to longitudinal cooling. Using the relaxation time approximation for the collision terms in the Boltzmann equations for gluons and for quarks and the real collision terms constructed from the simplest QCD interactions, we show that the collision times have the right behaviour for equilibration. The magnitude of the quark (antiquark) collision time remains bigger than the gluon collision time throughout the lifetime of the plasma so that gluons are equilibrating faster than quarks both chemically and kinetically. That is we have a two-stage equilibration scenario as has been pointed out already by Shuryak sometimes ago. Full kinetic equilibration is however slow and chemical equilibration cannot be completed before the onset of the deconfinement phase transition assumed to be at Tc=200T_c=200 MeV. By comparing the collision entropy density rates of the different processes, we show explicitly that inelastic processes, and \emph{not} elastic processes as is commonly assumed, are dominant in the equilibration of the plasma and that gluon branching leads the other processes in entropy generation. We also show that, within perturbative QCD, processes with higher power in \alpha_s need not be less important for the purpose of equilibration than those with lower power. The state of equilibration of the system has also a role to play. We compare our results with those of the parton cascade model.Comment: 17 pages, revtex+psfig style with 14 embedded postscript figures, to appear in Phys. Rev.

    Current blockage and extreme forces on a jacket model in focussed wave groups with current

    Get PDF
    This paper documents large laboratory-scale measurements of hydrodynamic force time histories on a realistic 1:80 scale space-frame jacket structure exposed to combined waves and in-line current. The aim is to investigate the fluid flow (and the associated hydrodynamic force) reduction relative to ambient fluid flow due to the presence of the jacket structure as an obstacle array, interpreted as wave-current blockage. Transient focussed wave groups, and embedded wave groups in a smaller regular wave background are generated in a towing tank, and the jacket is towed under different speeds opposite to the wave direction to simulate wave loading with different in-line uniform currents. The measurements are compared with numerical predictions using Computational Fluid Dynamics (CFD), with the actual jacket represented in a three-dimensional numerical wave tank as a porous tower modelled as a uniformly distributed Morison stress field. Good agreement is achieved, both in terms of incident surface elevation as well as total force time histories, all using a single set of Morison drag (Cd) and inertia (Cm) coefficients. Substantial force reduction is observed under transient large crest relative to prediction from the present industry design guideline with the same Morison coefficients. We demonstrate the generality of our findings: without influence of Keulegen-Carpenter (KC) number effect, a single invariant set of Cd and Cm is all that is required to numerically explain and reproduce the measured total force time histories on a realistic jacket model for a large range of wave heights and non-zero current speeds
    • 

    corecore