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Abstract

Golden-winged Warblers (Vermivora chrysoptera, Parulidae) are declining migrant song-

birds that breed in the Great Lakes and Appalachian regions of North America. Within their

breeding range, Golden-winged Warblers are found in early successional habitats adjacent

to mature hardwood forest, and previous work has found that Golden-winged Warbler habi-

tat preferences are scale-dependent. Golden-winged Warbler Working Group management

recommendations were written to apply to large regions of the breeding range, but there

may be localized differences in both habitat availability and preferences. Rapid declines at

the southernmost extent of their breeding range in Western North Carolina necessitate

investigation into landscape characteristics governing distribution in this subregion. Further-

more, with the increase in availability of community science data from platforms such as

eBird, it would be valuable to know if community science data produces similar distribution

models as systemic sampling data. In this study, we described patterns of Golden-winged

Warbler presence in Western North Carolina by examining habitat variables at multiple spa-

tial scales using data from standardized Audubon North Carolina (NC) playback surveys

and community science data from eBird. We compared model performance and predictions

between Audubon NC and eBird models and found that Golden-winged Warbler presence is

associated with sites which, at a local scale (150m), have less mature forest, more young

forest, more herb/shrub cover, and more road cover, and at a landscape scale (2500m),

have less herb/shrub cover. Golden-winged Warbler presence is also associated with higher

elevations and smaller slopes. eBird and Audubon models had similar variable importance

values, response curves, and overall performance. Based on variable importance values,

elevation, mature forest at the local scale, and road cover at the local scale are the primary

variables driving the difference between Golden-winged Warbler breeding sites and random

background sites in Western North Carolina. Additionally, our results validate the use of
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eBird data, since they produce species distribution modeling results that are similar to

results obtained from more standardized survey methods.

Introduction

Habitat loss is a primary threat to biodiversity in the present day [1, 2]. Migratory birds may

be especially vulnerable to habitat loss since they rely on the persistence of multiple quality

habitats for breeding, stopover, and wintering [3, 4]. As such, understanding the habitat associ-

ations of migratory birds can help predict patterns of distribution and abundance, and inform

management practices and conservation efforts. The Golden-winged Warbler (Vermivora
chrysoptera, Parulidae) is a migrant songbird which has been declining at an average of 1.85%

per year for over 50 years across their range [5]. Due to its vulnerable status, the Golden-

winged Warbler has been assigned to the Partners in Flight Red Watch List [6], the United

States Fish and Wildlife Service’s list of Birds of Conservation Concern [7] and is a candidate

for listing under the Endangered Species Act [8].

Currently, Golden-winged Warblers breed in two main regions: the Great Lakes region of

southeastern Canada and the northern-midwestern United States, and the Appalachian region

in select moderate-to-high elevation sites in the Appalachian Mountains [9]. Within their

breeding range, Golden-winged Warblers are generally found in early successional habitats

near mature hardwood forest [10, 11]. During the breeding season, Golden-winged Warblers

use multiple vegetation layers. Golden-winged Warblers build their nests on the ground in the

herbaceous layer or just above the ground in shrubs [12, 13]. Shrub cover provides protection

from predators and surrounding hardwood forest is used for male perches, nesting material,

foraging ground, and post-fledging habitat [11, 12, 14–16]. Many bird species, including

Golden-winged Warblers, select habitat based on conditions at multiple spatial scales, narrow-

ing down potential sites from large to small scales [17–20]. Studies of Golden-winged Warbler

breeding habitat associations have shown that variables important at the scale of the nest site,

such as herbaceous and shrub cover, differ from variables important at larger scales, such as

mature forest [21–23].

Despite the general trends, Golden-winged Warbler breeding habitat associations vary

between geographical areas and with landscape context [21–23]. Since Golden-winged Warblers

have a large latitudinal breeding range spanning from Canada to Georgia, both the availability

of certain habitat characteristics and preferences for different habitat characteristics (local adap-

tation or behavioral plasticity) may explain this variation in habitat associations [24]. Thus, it is

important to study Golden-winged Warbler breeding habitat associations throughout their

breeding range and at multiple spatial scales to understand these regional differences. Many

Golden-winged Warbler habitat studies are conducted in the Great Lakes Region and the cen-

tral Appalachians where densities are high [10, 11, 16, 21, 25]. Understanding Golden-winged

Warbler habitat associations in less-studied parts of their range is therefore a priority.

Golden-winged Warblers are especially vulnerable in the southern Appalachian Mountains

at the southernmost extent of their breeding range. Data from the North American Breeding

Bird Survey indicate that in Western North Carolina, Golden-winged Warbler populations

have decreased by approximately 6.5% per year from 1993–2019 [5]. Habitat loss due to

human development and maturation of early successional habitat, as well as brood parasitism

by Brown-headed Cowbirds (Molothrus ater) have contributed to this decline [12]. Thus,

declines in Golden-winged Warbler populations necessitate further investigation into the habi-

tat associations of this species, especially at the southern limit of its breeding range.
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The Golden-winged Warbler Working Group (GWWG) was founded in 2003 to facilitate

collaboration among scientists to produce best management practices for the conservation of

Golden-winged Warblers throughout their breeding and wintering ranges [26]. The GWWG

best management practices for the Appalachian Region are designed to apply to Golden-

winged Warbler populations in the Appalachian Mountains from New York to Georgia.

Because local Golden-winged Warbler habitat associations may vary within the large latitudi-

nal gradient of the Appalachian Region, it is critical to examine how these management guide-

lines align with Golden-winged Warbler habitat associations across the region. Difficulty in

identifying early successional habitat with appropriate granularity across large spatial scales

has prevented large-scale quantitative analyses of habitat associations to support these recom-

mendations. Fine-tuning these management recommendations based on localized differences

in habitat associations could vastly improve conservation efforts of Golden-winged Warblers,

especially at the limits of their breeding range.

For over thirty years, Audubon North Carolina (Audubon NC) has conducted playback

surveys during breeding season to collect data on the abundance and distribution of breeding

Golden-winged Warblers in Western North Carolina using the Golden-winged Warbler Atlas

Project protocol [27]. Audubon NC survey locations are chosen based on drive-by habitat

assessments, aerial photo review, proximity to known locations within dispersal range, and

private landowner cooperation, which could focus survey effort on certain parts of the land-

scape while excluding others. Audubon NC surveys are conducted with the primary goal of

finding new Golden-winged Warbler habitat, and much of what is known about the current

distribution of Golden-winged Warblers in North Carolina can be attributed to Audubon NC

and the Golden-winged Warbler Atlas Project. Analysis of the habitat associations of breeding

Golden-winged Warblers in Western North Carolina could help identify parts of the landscape

that may be suitable for breeding birds but have not been surveyed.

With the increase in popularity of the community science platform eBird (ebird.org), avian

presence and abundance data is now freely available for scientists to use to study species’

ranges and track changes in distribution over time [28]. eBird users can submit bird observa-

tions at any location and time, resulting in over 70 million complete checklists worldwide, and

over 1 million in North Carolina alone at the time of this publication [29]. Notably, eBird data

are considered semi-structured and are usually collected by non-professionals, potentially

resulting in a noisier dataset [30]. Unlike structured surveys such as the Golden-winged War-

bler Atlas Project, eBird data are not usually collected by observers with a specific conservation

or scientific goal. Despite these shortcomings, eBird data are increasingly being used success-

fully to understand distributions and habitat associations of bird species [31–35].

Community science data require fewer resources to collect than more traditional survey

methods, which require time and financial resources to organize and implement. Since

Golden-winged Warblers are rare in the Western North Carolina subregion, extra effort is

required to locate breeding sites. Many structured survey methods involve the use of playback,

in which a series of conspecific and/or allospecific bird songs or calls are broadcast to elicit a

response from a target species. While some eBird users may use a minimal amount of play-

back, most are likely only observing, and long periods of playback use are not part of the eBird

data collection method. By contrast, Audubon NC surveys use both conspecific and predator

sounds in a 20-minute-long standard playback protocol [27]. While there is limited evidence

of detrimental effects of conspecific playback on songbirds [36], there is substantial evidence

of reduced reproductive output with increased perceived predation risk from predator play-

back [37]. Importantly, Audubon NC playback surveys are conducted at maximum once per

year per site, minimizing such detrimental effects. Thus, the main differences between Audu-

bon NC and eBird data include: 1) Audubon NC surveys are conducted by trained staff or
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volunteers for targeted conservation work whereas eBird data are mostly collected by non-pro-

fessionals without specific conservation or management goals; and 2) Audubon NC surveys

involve the use of a standardized playback protocol, whereas eBird data do not usually involve

the use of playback, and are not collected following a survey protocol. Since structured surveys

require time and financial resources, and involve the use of playback, it would be valuable to

know if Golden-winged Warbler habitat models created with eBird community science data

produce similar results to those created with such structured survey data.

Because both structured survey data (Audubon NC) and eBird community science data are

abundant and available in the area, Western North Carolina is the ideal study site to compare

habitat models created with these two datasets. Additionally, Western North Carolina is a sub-

region of considerable conservation concern, since it is located at the southernmost extent of

the Golden-winged Warbler breeding range. Our goals in this paper are twofold: (1) to

describe habitat associations of Golden-winged Warblers in Western North Carolina at multi-

ple spatial scales and compare these associations to other areas within the breeding range, and

(2) to determine whether a model created using eBird data would yield the same results as a

model created with Audubon NC data.

Methods

We studied Golden-winged Warbler habitat associations across Western North Carolina

within the breeding range defined by the U.S. Geological Survey–Gap Analysis Project [38]

(Fig 1).

We conducted our analyses using two sets of Golden-winged Warbler presence data: Audu-

bon NC survey data and community science data from eBird. First, we obtained Golden-

winged Warbler presence data from Audubon NC collected during breeding season (May-

July) from 2000–2020. The data from Audubon NC were collected using standardized play-

back surveys as outlined in the Golden-winged Warbler Field Survey Protocol prepared by the

Cornell Lab of Ornithology [27]. Audubon NC surveys were conducted at sites that were

determined by visual inspection to be potentially suitable, usually roadside or on private lands

managed for Golden-winged Warblers with the permission of the landowner. Second, we

downloaded Golden-winged Warbler observations from eBird during the breeding season

from 2000–2020 [29]. We used stationary and incidental checklists only, excluding traveling

checklists for which there is greater spatial uncertainty surrounding the precise location of tar-

get birds.

Notably, the Audubon NC dataset contains Golden-winged Warbler absences and absences

can be inferred from complete eBird checklists [30]. We decided not to use absences in our

analysis for several reasons: 1) Absences are not comparable across datasets because all Audu-

bon absences are in locations pre-determined to be potentially suitable for Golden-winged

Warblers, while eBird-inferred absences are not; and 2) Audubon surveys included the use of

standardized playback, which increases detection probability for this rare species, while eBird

surveys did not, thus increasing the likelihood of false absences in the eBird dataset [39].

Because we chose not to use absences in our analysis, we employed a Maxent modeling

approach, which has been shown to perform better than generalized linear modeling and

other methods when presence-background data are used [40].

We removed eBird checklists that were submitted under the Golden-winged Warbler Atlas

Project protocol, since Audubon NC now submits their survey results to eBird. To further cor-

rect for data redundancy, we searched both datasets for all presence locations within 100m of

each location and kept only the location of the most recent Golden-winged Warbler observa-

tion. We chose this distance because 100m is the low end of the maximum detection distance
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for mixed shrub and forest habitats and is the approximate median radius of territory size

identified in the GWWG conservation plan for management purposes [26, 39]. Since some ter-

ritories were occupied in multiple years but the recorded spatial locations may differ across

years, this redundancy analysis allowed us to eliminate duplicate points from the same territo-

ries. Notably, many known Golden-winged Warbler locations visited by eBirders may have

been initially identified by Golden-winged Warbler Atlas Project surveys, and vice versa. To

account for this overlap between datasets, we assigned each point to the dataset with the earli-

est record of a presence within 100m of that point, starting in 1988 when the Audubon NC sur-

veys began. This redundancy analysis resulted in an Audubon sample size of N = 279 presence

points and an eBird sample size of N = 86 presence points.

We obtained raster data from four different data sources to create landcover and topo-

graphic covariates that were added into our habitat models. First, we obtained landcover data

from the United States Forest Service LandFire Data Distribution Site with a pixel size of

30x30m [41–46]. We used the LandFire Existing Vegetation Height (EVH) dataset because

unlike other landcover datasets, it separates forest into different height categories, allowing us

to distinguish young forest from mature forest. For forest cover variables, we used only

Fig 1. Study area in Western North Carolina, United States. Study area boundary was created using the U.S. Geological

Survey–Gap Analysis Project Golden-winged Warbler breeding range [38].

https://doi.org/10.1371/journal.pone.0275556.g001
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LandFire EVH data from 2008, 2012, and 2014 because the other available datasets (2001,

2016, and 2020) employed different methods and categorization schemes for forest height clas-

sification and are not consistent across time in our study area. For other landcover variables

that we derived from LandFire EVH (roads, developed land, agricultural land), we used all

available years. Next, we used the National Landcover Dataset (NLCD) United States Geologi-

cal Survey (USGS) Canopy Cover data from 2011 and 2016, which are continuous raster data-

sets describing percent canopy cover within each 30x30m pixel [47]. Third, we used the

Rangeland Analysis Platform (RAP) vegetation cover data, which describes percent herba-

ceous and shrub cover within each 30x30m pixel [48]. One aim of the RAP project is to create

landcover products that more accurately describe herbaceous and shrub cover since other cate-

gorical landcover datasets often underrepresent these early successional landcover types. RAP

data were available for every year represented in our Golden-winged Warbler presence data-

sets, so we downloaded data for all years from 2000–2020. Finally, we used the Advanced

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation

Model (DEM) Version 3 for our topographic variables, which has a 30x30m resolution [49].

For a summary of raster data used in our analysis, please see S1 Table.

Because Golden-winged Warblers nest in early successional habitat but also prefer sur-

rounding mature forest, we investigated habitat associations at two spatial scales: the local

scale (within 150m) and the landscape scale (within 2500m). We chose 150m because we

aimed to identify early successional habitat patches at a relatively small scale that still

accounted for some spatial error inherent in both datasets (playback response distance in the

Audubon NC dataset and known potential spatial noise in the eBird dataset [30]). We chose

the 2500m buffer distance to capture landscape-scale patterns because this distance is used in

the GWWG management guidelines as well as other Golden-winged Warbler studies [22, 26].

Using the raster package in R, we created two sets of rasters from each of the initial Land-

Fire datasets: one set describing percent land cover within a 150m circular buffer of each pixel

and the other describing percent land cover within a 2500m circular buffer of each pixel [50, 51].

Layers describing percent land cover within a 150m buffer included percent forest of height 0–10

meters, percent forest of height 25-50m, and percent road cover. Layers describing percent land

cover type within a 2500m buffer included percent forest of height 25-50m, percent road cover,

percent agricultural land, and percent developed land. For each of the two buffer distances (150m

and 2500m), we also calculated percent canopy cover using the NLCD USFS Canopy Cover data-

sets and percent herb/shrub cover using the RAP datasets. We used the ASTER DEM dataset to

calculate slope and aspect according to Horn (1981) with the raster package in R [51, 52].

We ran separate models for Audubon NC and eBird datasets using the same set of back-

ground points. We created 10,000 background points by sampling from polygons that

extended 10km around each presence point in a combined Audubon/eBird dataset using the

dismo and sp packages in R [50, 53–55]. We extracted environmental variables at presence

(Audubon NC, N = 279; eBird, N = 86) and background points in each dataset. For presence

points, we extracted landcover values from the raster dataset with the closest year to the obser-

vation date. For background points, we extracted landcover values from the most recent avail-

able dataset. Since topographic data are more consistent over time, we used 2019 topographic

data for all presence and background points.

Before modeling, we performed a Spearman’s correlation analysis between all extracted var-

iables in the presence and background datasets. Variables with a correlation coefficient >0.8

in any of the datasets were not included in the same model [56, 57]. Since canopy cover and

herb/shrub variables were highly correlated (>0.8) at both spatial scales, and the RAP data

have a finer temporal resolution than the NLCD Canopy Cover data, we decided to include

herb/shrub variables and exclude canopy cover variables in our models. Road cover and
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developed land were highly correlated (>0.8) at the landscape scale (2500m), so we used only

the developed land variable and excluded the road cover variable at the landscape scale.

We used a Maxent modeling approach starting with model tuning using the ENMeval pack-

age in R [58, 59]. Using the function ENMevaluate, we compared Maxent models created with

different combinations of feature classes and regularization multipliers. We excluded the

“product” and “threshold” feature classes from our combinations of tuning arguments based

on our expectations for the shapes of responses to landcover and topographic variables [60].

We also excluded the “threshold” feature class because it requires 80 presence records for

training and our eBird dataset had only 86 presence points (not leaving enough points for

cross-validation) [61]. This left us to compare models with “linear”, “quadratic”, and “hinge”

feature classes, and regularization multipliers of 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 5, 10, 15, and 20

[62]. To identify the best tuning arguments for our models, we used 10-fold cross-validation

where we set aside 10% of the data for testing and repeated the analysis 10 times until each

presence point was used for both training and testing. We used these cross-validation results

to select the model with the lowest average test omission rate [59, 63]. Since we wanted to cre-

ate models that were comparable across Audubon and eBird datasets, we selected the same

tuning parameters for both models by identifying the tuning parameters that led to the lowest

average test omission rate for both models. This tuning process led us to select the combina-

tion of “linear”, “quadratic” and “hinge” feature classes and a regularization multiplier of 15.

We calculated the area under the receiver operating characteristic curve (AUC) using the

ENMevaluate function to assess model performance.

Using the ENMnulls function from the ENMeval package in R, we ran null simulations

with 100 iterations to obtain a distribution of model performance metrics from null models

[59, 64, 65]. We compared null performance (AUC) with empirical model performance to

determine whether our models performed better than what would be expected from a null

model.

We created response curves from the Maxent model output showing the probability of

Golden-winged Warbler occurrence for varying values of each contributing variable (Fig 2).

We predicted current suitable habitat across the landscape of the study area based on our mod-

els using the predict function from the dismo package and the most recent landcover data

(Fig 3) [53]. To test how well our models created with one dataset performed when predicting

the other dataset, we extracted predicted values at each presence and background point of the

other dataset (extracted Audubon prediction values for all eBird points, and vice versa). We

used the ROCR package in R to calculate AUC for these cross-dataset predictions.

Results

Model results from the Audubon NC dataset indicate that at the local scale (within 150m)

Golden-winged Warbler presence was positively associated with forest of height 0-10m, herb/

shrub cover, and road cover, and negatively associated with forest of height 25-50m (Fig 2). At

the landscape scale (within 2500m), presence was negatively associated with developed land

cover and herb/shrub cover (Fig 2). Probability of occurrence decreased slightly when propor-

tion of forest of height 25-50m within 2500m was greater than 0.3 (Fig 2). Variables that con-

tributed the most to the Audubon model include elevation (34.6%), forest of height 25-50m

within 150m (26.2%), developed land within 2500m (14.5%), and road cover within 150m

(13.1%) (Table 1). Variables that did not contribute to the Audubon model include agricultural

land within 2500m (Table 1). Notably, aspect and forest of height 25–50 within 2500m contrib-

uted very little to the Audubon model (Table 1). The Audubon model received an average test
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AUC value of 0.80 ± 0.06 and performed significantly better than the null (average test AUC,

P< 2e-16).

Fig 2. Response curves of contributing variables from Maxent models created with Audubon and eBird datasets.

https://doi.org/10.1371/journal.pone.0275556.g002

Fig 3. Habitat suitability prediction maps created from (A) Audubon and (B) eBird models.

https://doi.org/10.1371/journal.pone.0275556.g003
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eBird model results were remarkably similar to Audubon model results. Based on the eBird

model, at the local scale, presence was positively associated with percent forest of height 0-

10m, herb/shrub cover, and road cover, and negatively associated with percent forest of height

25-50m (Fig 2). At the landscape scale (within 2500m), presence was negatively associated

with herb/shrub cover (Fig 2). Variables that contributed the most to the eBird model include

forest of height 25-50m within 150m (49.0%), elevation (25.5%), and road cover within 150m

(14.9%) (Table 1). Variables that did not contribute to the eBird model include forest of height

25-50m within 2500m, agricultural land within 2500m, developed land within 2500m, and

aspect (Table 1). Notably, forest of height 0-10m within 150m contributed very little to the

eBird model (Table 1). The eBird model received an average test AUC value of 0.81 ± 0.08 and

performed significantly better than the null (average test AUC, P < 2e-16). Means and stan-

dard deviations of all habitat variables for Audubon, eBird, and background data points are

included in S2 Table.

Habitat suitability maps show that most of our study area is not well-suited for breeding

Golden-winged Warblers based on the models (Fig 3). Mean suitability values across the land-

scape of the study area were 0.40 ± 0.23 based on the Audubon model and 0.35 ± 0.24 based

on the eBird model. The eBird and Audubon prediction rasters were positively correlated

(Spearman’s correlation coefficient = 0.66, P< 2e-16). Both predictions were sufficient at dif-

ferentiating between presence and background points of the other dataset (eBird prediction

values and Audubon presence points, AUC = 0.72; Audubon prediction values and eBird pres-

ence points, AUC = 0.81).

Discussion

We predicted habitat suitability across Western North Carolina using community science data

from eBird and structured survey data from Audubon NC. Our results suggest that in Western

North Carolina, Golden-winged Warblers are found at sites with less mature forest, more

young forest, more herb/shrub cover, and more road cover at a local scale (within 150m,

Fig 2). At a landscape scale (within 2500m), Golden-winged Warblers prefer less herb/shrub

cover (Fig 2). Golden-winged Warblers prefer higher elevation sites with a smaller slope

(Fig 2). Notably, Audubon and eBird models had similar variable importance values and

shapes of response curves (Table 1, Fig 2). These findings demonstrate the importance of con-

sidering land use variables at different spatial scales when studying Golden-winged Warbler

habitat, since different variables are important at different scales and variables may have

Table 1. Variable importance values from Maxent models created with Audubon and eBird datasets.

Audubon model eBird model

Variable Percent Contribution Permutation Importance Percent Contribution Permutation Importance

Forest height 0-10m within 150m 1.4 1.4 0.01 0.07

Forest height 25-50m within 150m 26.2 0.9 49.0 42.9

Road cover within 150m 13.1 19.3 14.9 15.0

Forest height 25-50m within 2500m 0.2 1.2 0 0

Agricultural land within 2500m 0 0 0 0

Developed land within 2500m 14.5 19.3 0 0

Herb and shrub cover within 150m 6.7 2.9 1.7 4.3

Herb and shrub cover within 2500m 1.5 4.7 2.3 5.6

Elevation 34.6 48.0 25.5 19.9

Slope 1.7 2.3 6.6 12.3

Aspect 0.009 0.05 0 0

https://doi.org/10.1371/journal.pone.0275556.t001
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opposite effects depending on scale. In the following discussion of our results, we outline the

similarities and differences between our models and the Golden-winged Warbler Working

Group (GWWG) Appalachian Region management guidelines, provide management recom-

mendations based on our results, and conclude with further applications of our work.

While Audubon and eBird models were highly similar, there were a few notable differences

that can likely be attributed to either differences in sample size or differences in data collection

methods. First, several variables contributed to the Audubon model that did not contribute to

the eBird model, including forest of height 25-50m at the landscape scale, developed land at

the landscape scale, and aspect. Second, nearly all important variables showed a stronger

response or a greater baseline probability of occurrence in the Audubon model compared to

the eBird model. Importantly, with a sample size of N = 279, the Audubon dataset had over 3x

more presence points than the eBird dataset (N = 86). With a sample size an order of magni-

tude larger, the Audubon model may have been able to pull out patterns in the data that were

not as strong in the eBird dataset. Our model tuning process led us to select a regularization

multiplier of 15, which is relatively high (default is 1). The regularization process in Maxent

protects against overfitting by applying a penalty to each term that is included in the model

[58, 61, 66]. Regularization limits the size of variable coefficients, which is the most likely

explanation for why terms in the Audubon model show stronger responses. Terms with high

penalties may be completely removed from the model, resulting in a variable importance of 0

and a flat response curve, which is the most likely explanation for the variables that do not con-

tribute to the eBird model but do contribute to the Audubon model. Thus, patterns seen in the

Audubon dataset may be present but less detectable in the eBird dataset due to the smaller

sample size, and our large regularization multiplier eliminated these variables from the eBird

model to prevent overfitting. Interestingly, the Audubon model was better at predicting eBird

presence values (AUC = 0.81) than the eBird model was at predicting Audubon presence val-

ues (AUC = 0.72), which is likely also due to the difference in sample size between the two

datasets.

Alternatively, it is also possible that the differences in data collection methods led to the dis-

similarities we see between Audubon and eBird models. For instance, it is possible that Audu-

bon surveys are deliberately conducted away from developed areas based on management

guidelines, while eBird surveys are biased towards more populated areas, resulting in a nega-

tive association between probability of occurrence and development in the Audubon model

and no effect of development in the eBird model. Based on the relatively high variable impor-

tance values of the developed land variable in the Audubon model, we believe that this differ-

ence is likely due to both sample size and data collection methods (Table 1). Young forest at

the local scale had a much smaller effect in the eBird model compared to the Audubon model

(Fig 2). Audubon observers may be searching for Golden-winged Warblers in early succes-

sional habitat that is more structurally complex (mix of young forest, herb, and shrub), while

eBird observers may be recording birds in less complex habitat with less young forest. How-

ever, unlike the developed land variable where variable importance values were very different

between Audubon and eBird models, young forest at the local scale contributed little to both

models, suggesting that sample size alone may be driving this difference (Table 1). Notably,

both mature forest at the landscape scale and aspect contributed very little to the Audubon

model, and were eliminated from the eBird model, suggesting that these variables are not

important predictors of Golden-winged Warbler presence in our study area (Table 1, Fig 2).

Our results are mostly compatible with GWWG management guidelines for the Appala-

chian Region with a few caveats. GWWG management guidelines call for >70% forest cover

within 2.4km of a habitat patch and 60–80% forest cover within 240m of a habitat patch [26].

As discussed above, our results suggest that in Western North Carolina, mature forest cover at
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a landscape scale is not an important predictor of suitable Golden-winged Warbler habitat

(Table 1, Fig 2). Most likely, this result is due to the landscape being dominated by mature for-

est cover, so percent mature forest cover is not important in distinguishing background points

from presence points. The GWWG recommends 15–55% herb/shrub cover within 240m of a

habitat patch [26]. Our results support this recommendation, since herb/shrub cover at the

local scale was positively associated with presence in both models (Fig 2). However, our models

show that the lack of mature forest at the local scale is a more important predictor of warbler

occurrence than the presence of herb/shrub cover (Table 1). Additionally, within 150m, pres-

ence sites on average had only 10% herb/shrub cover, which is much lower than the recom-

mended cover within the larger buffer of 240m (S2 Table). This is likely due to the nature of

landcover data to underrepresent early successional habitat but could also reflect the lack of

available early successional habitat in our study area, which may force birds to use suboptimal

habitats. GWWG management guidelines suggest maintaining 30–70% shrub and sapling

cover within a habitat patch [26], which aligns well with our models that show a positive asso-

ciation between presence and percent young forest at a local scale (Fig 2). Finally, GWWG

management guidelines indicate that developed land is unsuitable for breeding Golden-

winged Warblers [26]. Road cover at the local scale is positively associated with presence (Fig

2), but this can be attributed to 1) the propensity for early-successional habitat to be near

roads; and 2) surveyor bias due to accessibility. Developed land at the landscape scale is nega-

tively associated with presence in the Audubon model from values 0–0.02, after which proba-

bility of occurrence is 0, indicating that Golden-winged Warblers are selecting habitat within a

less developed landscape, which is congruent with GWWG management guidelines (Fig 2).

It is important to note that the GWWG outlines management goals to create ideal Golden-

winged Warbler breeding habitat. In reality, Golden-winged Warblers may be selecting sites

that are less than optimal based on what is available. For example, the lack of early successional

habitat in our study area may force Golden-winged Warblers to use very small corridors of

early successional habitat with unmeasurable (with spatial data) amounts of young forest or

herb/shrub cover. Thus, differences between our model results and the GWWG recommenda-

tions do not disqualify those recommendations, but rather describe how habitat is being used

in Western North Carolina in contrast to those recommendations.

Based on our results, we make the following management and conservation recommenda-

tions for the Western North Carolina subregion. Both the Audubon and eBird models identi-

fied elevation and mature forest within 150m as the most important predictors of Golden-

winged Warbler presence (Table 1). This suggests that in Western North Carolina, elevation

and mature forest at the local scale are driving the difference between background sites and

Golden-winged Warbler breeding sites. We recommend that future Golden-winged Warbler

survey and management efforts be concentrated on areas of the landscape at high elevations

(>800m, based on Fig 2, see also S2 Table). Both models found lack of mature forest to be a

more important predictor of Golden-winged Warbler presence than herb/shrub cover at the

local scale (Table 1, Fig 2). In our study area, herb/shrub communities not mixed with trees

are likely maintained through heavy human disturbance. Thus, Golden-winged Warblers are

likely selecting early successional habitat with complex vegetation layers including herbaceous,

shrub, and trees, and with relatively low human disturbance, which is consistent with the liter-

ature [10–15]. We recommend that local-scale habitat (150m) be maintained with structural

complexity such that young trees are present but space between trees and open canopy allow

herb/shrub communities to coexist with young forest. We recommend that survey efforts to

locate previously unknown Golden-winged Warbler territories focus on smaller or more struc-

turally complex patches of early successional habitat, which are likely more common and are

more utilized by birds in the Western North Carolina region.
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Both models had AUC values of� 0.80, indicating that the models performed well but

there were discrepancies in the data that could not be explained by our predictor variables.

Much of this variance can likely be explained by (1) the coarseness and quality of raster data

and (2) the rareness of Golden-winged Warblers across our study area. Landcover data is an

important tool used frequently in spatial ecology, but it has notable shortcomings, including

coarse pixel size, limited ground-truthing, and limited ability to describe heterogeneous land-

scapes. Additionally, raster datasets provide a snapshot of a landscape in time and seasonal var-

iation, along with ecological succession, complicates the ability of raster datasets to fully

describe a habitat. The scarcity of Golden-winged Warblers presents a challenge when study-

ing breeding habitat associations since their low abundance can be due to a variety of factors

not related to availability of breeding habitat, including dispersal effects, availability and qual-

ity of wintering habitat, and migration routes and availability of stopover sites. All these factors

can affect the abundance and spatial distribution of Golden-winged Warblers across the land-

scape of our study area. While our model predictions suggest low habitat suitability across our

study area, there could be other factors contributing to the density and distribution of the spe-

cies in Western North Carolina, and these unknown factors could help explain discrepancies

in the data that are not explained by the models.

Notably, presence locations are not confirmed breeding attempts in either dataset. We infer

that birds observed during the breeding months are using those habitats for breeding, but this

comes with some degree of uncertainty. Since Audubon NC data were collected with the use of

conspecific playback, which elicits a territorial response from breeding males, we are slightly

more confident that Audubon presence points represent breeding territories (compared to

eBird points), but neither dataset represents confirmed breeding data. To confirm breeding,

breeding behavior such as copulation, sitting on a nest, or feeding young must be documented.

Recently, eBird has promoted the use of Breeding Bird Atlas codes in eBird checklists, where

observers may indicate whether they witnessed breeding behaviors. We strongly recommend

that eBird users integrate the practice of documenting breeding behavior into their observa-

tions, as this would improve breeding data quality and the research products that use eBird

data. With the recent initiation of the North Carolina Bird Atlas (ebird.org/atlasnc/home),

which is using eBird as a data submission platform, more of these breeding behavior data will

likely be available for North Carolina birds in the future.

Future research on the habitat associations of Golden-winged Warblers should focus on

analysis of multiple sources of spatial data, perhaps of finer spatial resolution, at multiple spa-

tial scales. Since early successional habitat transforms over time into mature forest in our study

area, future models should incorporate environmental variables with high temporal resolution.

Additionally, future field research should investigate the relationships between habitat vari-

ables and Golden-winged Warbler survival and reproductive success, in order to understand

how populations will respond to land use and habitat changes. Our results show that eBird

data can produce Maxent species distribution modeling results that are similar to results

obtained from the more standardized Audubon NC survey data. Researchers should continue

to utilize eBird data to answer ecological questions since eBird data tends to be more compre-

hensive across both space and time than other methods of data collection. Additionally, since

structured surveys such as Audubon North Carolina surveys require time and financial

resources and may create a higher level of disturbance from playback, eBird data should be

considered as a viable alternative to traditional surveys when appropriate. However, increased

detection probability with playback and the increased sample size of occurrences as a result

underscore the importance of continuing to use structured survey protocols such as those used

in the Golden-winged Warbler Atlas Project when necessary. At the least, eBird and more
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traditional survey methods should be used in combination or to supplement each other to

improve our understanding of Golden-winged Warbler distribution.
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