46 research outputs found

    Experimental Tuberculosis in the Wistar Rat: A Model for Protective Immunity and Control of Infection

    Get PDF
    BACKGROUND: Despite the availability of many animal models for tuberculosis (TB) research, there still exists a need for better understanding of the quiescent stage of disease observed in many humans. Here, we explored the use of the Wistar rat model for the study of protective immunity and control of Mycobacterium tuberculosis (Mtb) infection. METHODOLOGY/PRINCIPAL FINDINGS: The kinetics of bacillary growth, evaluated by the colony stimulating assay (CFU) and the extent of lung pathology in Mtb infected Wistar rats were dependent on the virulence of the strains and the size of the infecting inoculums. Bacillary growth control was associated with induction of T helper type 1 (Th1) activation, the magnitude of which was also Mtb strain and dose dependent. Histopathology analysis of the infected lungs demonstrated the formation of well organized granulomas comprising epithelioid cells, multinucleated giant cells and foamy macrophages surrounded by large numbers of lymphocytes. The late stage subclinical form of disease was reactivated by immunosuppression leading to increased lung CFU. CONCLUSION: The Wistar rat is a valuable model for better understanding host-pathogen interactions that result in control of Mtb infection and potentially establishment of latent TB. These properties together with the ease of manipulation, relatively low cost and well established use of rats in toxicology and pharmacokinetic analyses make the rat a good animal model for TB drug discovery

    Detection of functional connectivity in the resting mouse brain

    No full text
    Resting-state functional connectivity, manifested as spontaneous synchronous activity in the brain, has been detected by functional MRI (fMRI) across species such as humans, monkeys, and rats. Yet, most networks, especially the classical bilateral connectivity between hemispheres, have not been reliably found in the mouse brain. This could be due to anesthetic effects on neural activity and difficulty in maintaining proper physiology and neurovascular coupling in anesthetized mouse. For example, α2 adrenoceptor agonist, medetomidine, is a sedative for longitudinal mouse fMRI. However, the higher dosage needed compared to rats may suppress the functional synchrony and lead to unilateral connectivity. In this study, we investigated the influence of medetomidine dosage on neural activation and resting-state networks in mouse brain. We show that mouse can be stabilized with dosage as low as 0.1 mg/kg/h. The stimulation-induced somatosensory activation was unchanged when medetomidine was increased from 0.1 to 6 and 10 folds. Especially, robust bilateral connectivity can be observed in the primary, secondary somatosensory and visual cortices, as well as the hippocampus, caudate putamen, and thalamus at low dose of medetomidine. Significant suppression of inter-hemispheric correlation was seen in the thalamus, where the receptor density is high, under 0.6 mg/kg/h, and in all regions except the caudate, where the receptor density is low, under 1.0 mg/kg/h. Furthermore, in mice whose activation was weaker or took longer time to detect, the bilateral connectivity was lower. This demonstrates that, with proper sedation and conservation of neurovascular coupling, similar bilateral networks like other species can be detected in the mouse brain

    Business survival in modern day China.

    No full text
    81 p.The purpose of this study investigates key business and cultural issues and challenges to potential investors interested in establishing a manufacturing plant, using a chemical manufacturing plant named Dalian Tairui Chemical Industry Co. Ltd as a case study. The plant is situated in the developing coastal city of Tianjin in Eastern China.Master of Business Administratio

    A fast MEMS scanning Photoacoustic Microscopy system and its application in glioma study

    No full text
    We present a water-proof Microelectromechanical systems (MEMS) based scanning optical resolution Photoacoustic Microscopy (OR-PAM) system and its application in glioma tumor mouse model study. The presented OR-PAM system has high optical resolution (similar to 3 similar to m) and high scanning speed (up to 50 kHz A-scan rate), which is ideal for cerebral vascular imaging. In this study, the mice with glioma tumor are treated with vascular disrupting agent (VDA). OR-PAM system is utilized to image the cerebral with the whole skull intact before and after the injection of VDA. By image registration, the response of every single blood vessel can be traced. This will provide us deeper understanding of the drug effect.1

    Photoacoustic microscopy for evaluating combretastatin A4 phosphate induced vascular disruption in orthotopic glioma

    No full text
    The use of an optical resolution photoacoustic microscopy (OR-PAM) system to evaluate the vascular disruptive effect of combretastatin A4 Phosphate (CA4P) on a murine orthotopic glioma with intact skull is described here. Second generation optical-resolution photoacoustic microscopy scanner with a 532 nm pulsed diode-pumped solid-state laser that specifically matches the absorption maximum of hemoglobin in tissues was used to image orthotopic glioma inoculated in mouse brain. Two-dimensional maps of brain vasculature with a lateral resolution of 5 m and a depth of 700 m at a field of view 5 x 4 mm were acquired on normal brain and glioma brain. Longitudinal imaging of the brain pre- and post-administration of CA4P, a FDA approved drug for solid tumors, enabled the monitoring of hemodynamic changes in tumor vasculature revealing the well documented vascular shutdown and recovery associated with this drug. Our study marks the beginning of potential prospects of this technology as an imaging tool for preclinical and clinical study of pathologies characterized by changes in the vasculature.11sciescopu

    Multispectral optoacoustic and MRI coregistration for molecular imaging of orthotopic model of human glioblastoma

    No full text
    Multi-modality imaging methods are of great importance in oncologic studies for acquiring complementary information, enhancing the efficacy in tumor detection and characterization. We hereby demonstrate a hybrid non-invasive in vivo imaging approach of utilizing magnetic resonance imaging (MRI) and Multispectral Optoacoustic Tomography (MSOT) for molecular imaging of glucose uptake in an orthotopic glioblastoma in mouse. The molecular and functional information from MSOT can be overlaid on MRI anatomy via image coregistration to provide insights into probe uptake in the brain, which is verified by ex vivo fluorescence imaging and histological validation. In vivo MSOT and MRI imaging of an orthotopic glioma mouse model injected with IRDye800-2DG. Image coregistration between MSOT and MRI enables multifaceted (anatomical, functional, molecular) information from MSOT to be overlaid on MRI anatomy images to derive tumor physiological parameters such as perfusion, haemoglobin and oxygenation

    Preventing and controlling intra-hospital spread of COVID-19 in Taiwan – Looking back and moving forward

    No full text
    COVID-19 has exposed major weaknesses in the healthcare settings. The surge in COVID-19 cases increases the demands of health care, endangers vulnerable patients, and threats occupational safety. In contrast to a hospital outbreak of SARS leading to a whole hospital quarantined, at least 54 hospital outbreaks following a COVID-19 surge in the community were controlled by strengthened infection prevention and control measures for preventing transmission from community to hospitals as well as within hospitals. Access control measures include establishing triage, epidemic clinics, and outdoor quarantine stations. Visitor access restriction is applied to inpatients to limit the number of visitors. Health monitoring and surveillance is applied to healthcare personnel, including self-reporting travel declaration, temperature, predefined symptoms, and test results. Isolation of the confirmed cases during the contagious period and quarantine of the close contacts during the incubation period are critical for containment. The target populations and frequency of SARS-CoV-2 PCR and rapid antigen testing depend on the level of transmission. Case investigation and contact tracing should be comprehensive to identify the close contacts to prevent further transmission. These facility-based infection prevention and control strategies help reduce hospital transmission of SARS-CoV-2 to a minimum in Taiwan

    Increase of carbapenem-resistant Acinetobacter baumannii infection in acute care hospitals in Taiwan: association with hospital antimicrobial usage.

    Get PDF
    OBJECTIVE: Carbapenem-resistant Acinetobacter baumannii (CRAB) has emerged as an important pathogen causing healthcare-associated infections (HAIs) in Taiwan. The present study is aimed to investigate the epidemiology of HAIs caused by CRAB and the association of CRAB infection and hospital usage of different antimicrobials. METHODS: Two nationwide databases in the period 2003 to 2008, the Taiwan Nosocomial Infection Surveillance System and National Health Insurance claim data, were used for analysis. A total of 13,811 healthcare-associated A. baumannii infections and antimicrobial usage data from 121 hospitals were analyzed. RESULTS: There was a significant increase in the proportion of number of HAIs caused by CRAB over that by all A. baumannii (CRABpAB), from 14% in 2003 to 46% in 2008 (P<0.0001). The greatest increase was in central Taiwan, from 4% in 2003 to 62% in 2008 (P<0.0001). Use of anti-pseudomonal carbapenems, but not other classes of antibiotics, was significantly correlated with the increase of CRABpAB (r = 0.86, P<0.0001). CONCLUSIONS: We suggested that dedicated use of anti-pseudomonal carbapenems would be an important intervention to control the increase of CRABpAB
    corecore