124 research outputs found

    3D printed pneumatic soft actuators and sensors: their modeling, performance quantification, control and applications in soft robotic systems

    Get PDF
    Continued technological progress in robotic systems has led to more applications where robots and humans operate in close proximity and even physical contact in some cases. Soft robots, which are primarily made of highly compliant and deformable materials, provide inherently safe features, unlike conventional robots that are made of stiff and rigid components. These robots are ideal for interacting safely with humans and operating in highly dynamic environments. Soft robotics is a rapidly developing field exploiting biomimetic design principles, novel sensor and actuation concepts, and advanced manufacturing techniques. This work presents novel soft pneumatic actuators and sensors that are directly 3D printed in one manufacturing step without requiring postprocessing and support materials using low-cost and open-source fused deposition modeling (FDM) 3D printers that employ an off-the-shelf commercially available soft thermoplastic poly(urethane) (TPU). The performance of the soft actuators and sensors developed is optimized and predicted using finite element modeling (FEM) analytical models in some cases. A hyperelastic material model is developed for the TPU based on its experimental stress-strain data for use in FEM analysis. The novel soft vacuum bending (SOVA) and linear (LSOVA) actuators reported can be used in diverse robotic applications including locomotion robots, adaptive grippers, parallel manipulators, artificial muscles, modular robots, prosthetic hands, and prosthetic fingers. Also, the novel soft pneumatic sensing chambers (SPSC) developed can be used in diverse interactive human-machine interfaces including wearable gloves for virtual reality applications and controllers for soft adaptive grippers, soft push buttons for science, technology, engineering, and mathematics (STEM) education platforms, haptic feedback devices for rehabilitation, game controllers and throttle controllers for gaming and bending sensors for soft prosthetic hands. These SPSCs are directly 3D printed and embedded in a monolithic soft robotic finger as position and touch sensors for real-time position and force control. One of the aims of soft robotics is to design and fabricate robotic systems with a monolithic topology embedded with its actuators and sensors such that they can safely interact with their immediate physical environment. The results and conclusions of this thesis have significantly contributed to the realization of this aim

    Behaviour of a Mixture of Coal Wash and Rubber Crumbs under Cyclic Loading

    Get PDF
    The interest in the utilization of granular waste materials as construction fills in lieu of quarried natural aggregates has been increasing recently, resulting in more sustainable and cost-effective industry practices being adopted. This study proposes a mixture of coal wash (CW; a by-product of coal mining) and rubber crumbs (RC; shredding of waste rubber tires) as a potential capping composite for railways. A series of cyclic triaxial tests mimicking typical rail traffic loads were conducted on CWRC mixtures with and without rest periods to gain an insightful understanding of the deformation mechanism of rubber particles. It is found that the inclusion of RC increases the axial permanent strain, the volumetric strain, and the damping ratio, and it reduces the resilient modulus, the shear modulus, and the breakage index (BI). Also, it is found that the mixture with RC recovers part of its energy dissipation efficiency after a rest period is applied, reducing the breakage index further even when the number of load cycles increases. Accordingly, a modified equation is proposed to determine the void ratio, capturing the deformation of the rubber

    Using Neural Networks for Switch Failure Correction in Frequency Reconfigurable Antenna Arrays

    Get PDF
    Abstract-This paper presents a new technique to correct switch failures in a frequency reconfigurable antenna array. The correction procedure requires at the beginning a detection of the failed switch. The detection process relies on integrating sensing lines within the array substrate to monitor the switch failure. The proposed correction technique is based on using Neural Network (NN) to overcome the failed switch. This is achieved by making the trained NN searches for other switch combinations that give the same array behavior

    Frequency-Tunable and Pattern Diversity Antennas for Cognitive Radio Applications

    Get PDF
    Frequency-tunable microstrip antennas, for cognitive radio applications, are proposed herein. The approach is based on tuning the operating frequency of a bandpass filter that is incorporated into a wideband antenna. The integration of an open loop resonator- (OLR-) based adjustable bandpass filter into a wideband antenna to transform it into a tunable filter-antenna is presented. The same technique is employed to design a cognitive radio pattern diversity tunable filter-antenna. A good agreement between the simulated and measured results for the fabricated prototypes is obtained. The radiation characteristics of each designed tunable filter-antenna are included herein

    The Integration of Reconfigurable Filters for the Matching of Wideband Antennas

    Get PDF
    Abstract-This paper presents a technique to reduce the cost and overcome the high processing power needed to analyze the signals received by wideband antennas. The idea is based on matching a wideband antenna to a reconfigurable filter. This will allow an easier processing for the received signal and the replacement of the bank of filters needed after the antenna by one reconfigurable filter element. Two prototypes are shown to prove the validity of the proposed technique

    Recycled materials in railroad substructure: an energy perspective

    Full text link
    Given that the current ballasted tracks in Australia may not be able to support faster and significantly heavier freight trains as planned for the future, the imminent need for innovative and sustainable ballasted tracks for transport infrastructure is crucial. Over the past two decades, a number of studies have been conducted by the researchers of Transport Research Centre (TRC) at the University of Technology Sydney (UTS) to investigate the ability of recycled rubber mats, as well as waste tyre cells and granulated rubber to improve the stability of track substructure including ballast and subballast layers. This paper reviews four applications of these novel methods, including using recycled rubber products such as CWRC mixtures (i.e., mixtures of coal wash (CW) and rubber crumbs (RC)) and SEAL mixtures (i.e., mixtures of steel furnace slag, CW and RC) to replace subballast/capping materials, tyre cells reinforcements for subballast/capping layer and under ballast mats; and investigates the energy dissipation capacity for each application based on small-scale cyclic triaxial tests and large-scale track model tests. It has been found that the inclusion of these rubber products increases the energy dissipation effect of the track, hence reducing the ballast degradation efficiently and increasing the track stability. Moreover, a rheological model is also proposed to investigate the effect of different rubber inclusions on their efficiency to reduce the transient motion of rail track under dynamic loading. The outcomes elucidated in this paper will lead to a better understanding of the performance of ballast tracks upgraded with resilient rubber products, while promoting environmentally sustainable and more affordable ballasted tracks for greater passenger comfort and increased safety

    Autophagy Protein Atg3 is Essential for Maintaining Mitochondrial Integrity and for Normal Intracellular Development of Toxoplasma gondii Tachyzoites

    Get PDF
    Autophagy is a cellular process that is highly conserved among eukaryotes and permits the degradation of cellular material. Autophagy is involved in multiple survival-promoting processes. It not only facilitates the maintenance of cell homeostasis by degrading long-lived proteins and damaged organelles, but it also plays a role in cell differentiation and cell development. Equally important is its function for survival in stress-related conditions such as recycling of proteins and organelles during nutrient starvation. Protozoan parasites have complex life cycles and face dramatically changing environmental conditions; whether autophagy represents a critical coping mechanism throughout these changes remains poorly documented. To investigate this in Toxoplasma gondii, we have used TgAtg8 as an autophagosome marker and showed that autophagy and the associated cellular machinery are present and functional in the parasite. In extracellular T. gondii tachyzoites, autophagosomes were induced in response to amino acid starvation, but they could also be observed in culture during the normal intracellular development of the parasites. Moreover, we generated a conditional T. gondii mutant lacking the orthologue of Atg3, a key autophagy protein. TgAtg3-depleted parasites were unable to regulate the conjugation of TgAtg8 to the autophagosomal membrane. The mutant parasites also exhibited a pronounced fragmentation of their mitochondrion and a drastic growth phenotype. Overall, our results show that TgAtg3-dependent autophagy might be regulating mitochondrial homeostasis during cell division and is essential for the normal development of T. gondii tachyzoites

    Essential genes for astroglial development and axon pathfinding during zebrafish embryogenesis

    Get PDF
    The formation of the central nervous system depends on the coordinated development of neural and glial cell types that arise from a common precursor. Using an existing group of zebrafish mutants generated by viral insertion, we performed a “shelf-screen” to identify genes necessary for astroglial development and axon scaffold formation. We screened 274 of 315 viral insertion lines using antibodies that label axons (anti-Acetylated Tubulin) and astroglia (anti-Gfap) and identified 25 mutants with defects in gliogenesis, glial patterning, neurogenesis, and axon guidance. We also identified a novel class of mutants affecting radial glial cell numbers. Defects in astroglial patterning were always associated with axon defects, supporting an important role for axon-glial interactions during axon scaffold development. The genes disrupted in these viral lines have all been identified, providing a powerful new resource for the study of axon guidance, glio- and neurogenesis, and neuron-glial interactions during development of the vertebrate CNS.National Institutes of Health (U.S.) (Grant T32MH020051)National Institutes of Health (U.S.) (Grant F32NS043872
    • …
    corecore