20 research outputs found

    LIQUORICE BEVERAGE EFFECT ON THE PHARMACOKINETIC PARAMETERS OF ATORVASTATIN, SIMVASTATIN, AND LOVASTATIN BY LIQUID CHROMATOGRAPHY-MASS SPECTROSCOPY/MASS SPECTROSCOPY

    Get PDF
    ABSTRACTObjective: The objective of this study is to examine the effects of pre-consumption of freshly prepared liquorice beverage (4 ml/kg) on thepharmacokinetic (PK) parameters of (80 mg/kg) oral dose of atorvastatin, simvastatin, and lovastatin in healthy rats plasma.Methods: A simple, rapid, and applicable analytical method was developed for the determination of each statin in rats' plasma. This method usesliquid chromatography-mass spectroscopy/mass spectroscopy. The mobile phase composed of methanol and formic acid in water and glimepiride asan internal standard. 108 rats were used in this study. Liquorice juice was given, and then each of the statins was given to test groups and liquoriceonly to the control groups, and then plasma samples were withdrawn on specific time schedule then PK analysis was performed.Results: The analytical method showed acceptable linearity, recovery, precision, and accuracy. Administration of liquorice resulted in a significantincrease in maximum concentration in plasma (C) of the three statins, also the area under plasma level-time curves (area under curve) was increasedsignificantly. Moreover, the bioavailability of the drugs. On the other hand, the elimination of the three drugs showed no great changes, which suggestsan interaction between liquorice and the transporting system of statins on the gut and biliary wall.maxConclusion: Consumption of liquorice results in increase bioavailability of atorvastatin, simvastatin, and lovastatin.Keywords: Liquorice, Atorvastatin, Liquid chromatography-mass spectroscopy/mass spectroscopy, Simvastatin, Lovastatin, Pharmacokineticparameters

    Tablet fragmentation without a disintegrant: A novel design approach for accelerating disintegration and drug release from 3D printed cellulosic tablets

    Get PDF
    Fused deposition modelling (FDM) 3D printing has shown the most immediate potential for on-demand dose personalisation to suit particular patient's needs. However, FDM 3D printing often involves employing a relatively large molecular weight thermoplastic polymer and results in extended release pattern. It is therefore essential to fast-track drug release from the 3D printed objects. This work employed an innovative design approach of tablets with unique built-in gaps (Gaplets) with the aim of accelerating drug release. The novel tablet design is composed of 9 repeating units (blocks) connected with 3 bridges to allow the generation of 8 gaps. The impact of size of the block, the number of bridges and the spacing between different blocks were investigated. Increasing the inter-block spaces reduced mechanical resistance of the unit, however, tablets continued to meet pharmacopeial standards for tablet's friability. Upon introduction into gastric medium, 1 mm spaces tablet broke into mini-structures within 4 min and met the USP criteria of immediate release products (86.7% drug release at 30 min). Real-time ultraviolet (UV) imaging indicated that the cellulosic matrix has expanded due to swelling of HPC upon introduction to dissolution medium. This was followed by a steady erosion of the polymeric matrix at a rate of 8 μm/min. The design approach was more efficient than formulation approach of adding disintegrants to accelerate tablet disintegration and drug release. This work provides a unique example where computer-aided design was instrumental at modifying the performance of solid dosage forms. Such an example may serve as a foundation for a new generation of dosage forms with complicated geometric structures to achieve functionality that are usually reached by formulation approach. [Abstract copyright: Copyright © 2017. Published by Elsevier B.V.

    Plasma concentrations of 25-hydroxyvitamin D among Jordanians: Effect of biological and habitual factors on vitamin D status

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vitamin D is cutaneously synthesized following sun exposure (vitamin D<sub>3</sub>) as well as it is derived from dietary intake (vitamin D<sub>3 </sub>and D<sub>2</sub>). Vitamin D<sub>2 </sub>and D<sub>3 </sub>are metabolized in the liver to 25-hydroxyvitamin D (25(OH)D). This metabolite is considered the functional indicator of vitamin D stores in humans. Since Jordan latitude is 31°N, cutaneous synthesis of vitamin D<sub>3 </sub>should be sufficient all year round. However, many indications reveal that it is not the case. Thus, this study was conducted to determine the 25(OH)D status among Jordanians.</p> <p>Methods</p> <p>Three hundred healthy volunteers were enrolled in a cross sectional study; 201 females and 99 males. 25(OH)D and calcium concentrations were measured by enzyme linked immunosorbent assay and spectroscopy techniques, respectively. All participants filled a study questionnaire that covered age, sex, height, weight, diet, and dress style for females. Females were divided according to their dress style: Western style, Hijab (all body parts are covered except the face and hands), and Niqab (all body parts are covered including face and hands).</p> <p>Results</p> <p>The average plasma 25(OH)D levels in males and females were 44.5 ± 10.0 nmol/l and 31.1 ± 12.0 nmol/l, respectively. However, when female 25(OH)D levels were categorized according to dress styles, the averages became 40.3, 31.3 and 28.5 nmol/l for the Western style, Hijab and Niqab groups, respectively. These 25(OH)D levels were significantly less than those of males (p < 0.05, 0.001, 0.001, respectively). In addition, the plasma 25(OH)D levels of the Western style group was significantly higher than those of Hijab and Niqab groups (p < 0.001). Furthermore, dairy consumption in males was a positive significant factor in vitamin D status. Even though calcium concentrations were within the reference range, the Hijab and Niqab-dressed females have significantly less plasma calcium levels than males (p < 0.01).</p> <p>Conclusions</p> <p>Very low plasma 25(OH)D levels in females wearing Hijab or Niqab are highly attributed to low sunlight or UVB exposure. In addition, most of males (76%) and Western style dressed females (90%) have 25(OH)D concentrations below the international recommended values (50 nmol/l), suggesting that although sun exposure should be enough, other factors do play a role in these low concentrations. These findings emphasize the importance of vitamin D supplementation especially among conservatively dressed females, and determining if single nucleotide polymorphisms of the genes involved in vitamin D metabolism do exist among Jordanians.</p

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Lipids Alterations Associated with Metformin in Healthy Subjects: An Investigation Using Mass Spectrometry Shotgun Approach

    No full text
    Metformin is an orally effective insulin-sensitizing drug widely prescribed for treating type 2 diabetes mellitus (T2DM). Metformin has been reported to alter lipid metabolism. However, the molecular mechanisms behind its impact on lipid metabolism remain partially explored and understood. In the current study, mass spectrometry-based lipid profiling was used to investigate the lipidomic changes in the serum of 26 healthy individuals after a single-dose intake of metformin. Samples were analyzed at five-time points: preadministration, before the maximum concentration of metformin (Cmax), Cmax, after Cmax, and 36 h post-administration. A total of 762 molecules were significantly altered between the five-time points. Based on a comparison between baseline level and Cmax, metformin significantly increased and decreased the level of 33 and 192 lipids, respectively (FDR &le; 0.05 and fold change cutoff of 1.5). The altered lipids are mainly involved in arachidonic acid metabolism, steroid hormone biosynthesis, and glycerophospholipid metabolism. Furthermore, several lipids acted in an opposed or similar manner to metformin levels and included fatty acyls, sterol lipids, glycerolipids, and glycerophospholipids. The significantly altered lipid species pointed to fundamental lipid signaling pathways that could be linked to the pleiotropic effects of metformin in T2DM, insulin resistance, polycystic ovary syndrome, cancer, and cardiovascular diseases
    corecore