28 research outputs found

    The <i>agr</i> inhibitors solonamide B and analogues alter immune responses to <i>Staphylococccus aureus</i> but do not exhibit adverse effects on immune cell functions

    No full text
    Staphylococcus aureus infections are becoming increasingly difficult to treat due to antibiotic resistance with the community-associated methicillin-resistant S. aureus (CA-MRSA) strains such as USA300 being of particular concern. The inhibition of bacterial virulence has been proposed as an alternative approach to treat multi-drug resistant pathogens. One interesting anti-virulence target is the agr quorum-sensing system, which regulates virulence of CA-MRSA in response to agr-encoded autoinducing peptides. Agr regulation confines exotoxin production to the stationary growth phase with concomitant repression of surface-expressed adhesins. Solonamide B, a non-ribosomal depsipeptide of marine bacterial origin, was recently identified as a putative anti-virulence compound that markedly reduced expression of α-hemolysin and phenol-soluble modulins. To further strengthen solonamide anti-virulence candidacy, we report the chemical synthesis of solonamide analogues, investigation of structure-function relationships, and assessment of their potential to modulate immune cell functions. We found that structural differences between solonamide analogues confer significant differences in interference with agr, while immune cell activity and integrity is generally not affected. Furthermore, treatment of S. aureus with selected solonamides was found to only marginally influence the interaction with fibronectin and biofilm formation, thus addressing the concern that application of compounds inducing an agr-negative state may have adverse interactions with host factors in favor of host colonization

    Structure Dependent-Immunomodulation by Sugar Beet Arabinans via a SYK Tyrosine Kinase-Dependent Signaling Pathway

    Get PDF
    There is much interest in the immunomodulatory properties of dietary fibers but their activity may be influenced by contamination with microbial-associated molecular patterns (MAMPs) such as lipopolysaccharide (LPS) and lipoteichoic acids, which are difficult to remove completely from biological samples. Bone marrow-derived dendritic cells (BMDCs) from TLR2x4 double-KO mice were shown to be a reliable approach to analyse the immunomodulatory properties of a diverse range of dietary fibers, by avoiding immune cell activation due to contaminating MAMPs. Several of the 44 tested dietary fiber preparations induced cytokine responses in BMDCs from TLR2x4 double-KO mice. The particulate fractions of linear arabinan (LA) and branched arabinan (BA) from sugar beet pectin were shown to be strongly immune stimulatory with LA being more immune stimulatory than BA. Enzymatic debranching of BA increased its immune stimulatory activity, possibly due to increased particle formation by the alignment of debranched linear arabinan. Mechanistic studies showed that the immunostimulatory activity of LA and BA was independent of the Dectin-1 recognition but Syk kinase-dependent

    Identification of Genetic Loci in Lactobacillus plantarum That Modulate the Immune Response of Dendritic Cells Using Comparative Genome Hybridization

    Get PDF
    Contains fulltext : 88219.pdf (publisher's version ) (Open Access)BACKGROUND: Probiotics can be used to stimulate or regulate epithelial and immune cells of the intestinal mucosa and generate beneficial mucosal immunomodulatory effects. Beneficial effects of specific strains of probiotics have been established in the treatment and prevention of various intestinal disorders, including allergic diseases and diarrhea. However, the precise molecular mechanisms and the strain-dependent factors involved are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we aimed to identify gene loci in the model probiotic organism Lactobacillus plantarum WCFS1 that modulate the immune response of host dendritic cells. The amounts of IL-10 and IL-12 secreted by dendritic cells (DCs) after stimulation with 42 individual L. plantarum strains were measured and correlated with the strain-specific genomic composition using comparative genome hybridisation and the Random Forest algorithm. This in silico "gene-trait matching" approach led to the identification of eight candidate genes in the L. plantarum genome that might modulate the DC cytokine response to L. plantarum. Six of these genes were involved in bacteriocin production or secretion, one encoded a bile salt hydrolase and one encoded a transcription regulator of which the exact function is unknown. Subsequently, gene deletions mutants were constructed in L. plantarum WCFS1 and compared to the wild-type strain in DC stimulation assays. All three bacteriocin mutants as well as the transcription regulator (lp_2991) had the predicted effect on cytokine production confirming their immunomodulatory effect on the DC response to L. plantarum. Transcriptome analysis and qPCR data showed that transcript level of gtcA3, which is predicted to be involved in glycosylation of cell wall teichoic acids, was substantially increased in the lp_2991 deletion mutant (44 and 29 fold respectively). CONCLUSION: Comparative genome hybridization led to the identification of gene loci in L. plantarum WCFS1 that modulate the immune response of DCs

    Faecalibacterium prausnitzii A2-165 has a high capacity to induce IL-10 in human and murine dendritic cells and modulates T cell responses

    Get PDF
    Acknowledgements This work was financially supported by the EC FP7 Cross-talk project (PITN-GA-2008-215553). The authors thank the Histology Platform from GABI research unit and especially Abdelhak Boukadiri for their technical support in the histology sample preparation and Marlène Héry, Charline Pontlevoy, Jerome Pottier and André Tiffoche (UE0907 IERP, Jouy en Josas) for their help during animal experiments. The authors thank Rafael Muñoz-Tamayo (INRA) for his help in performing the PCA.Peer reviewedPublisher PD

    Immunomodulatory Effects of Streptococcus suis Capsule Type on Human Dendritic Cell Responses, Phagocytosis and Intracellular Survival

    Get PDF
    Streptococcus suis is a major porcine pathogen of significant commercial importance worldwide and an emerging zoonotic pathogen of humans. Given the important sentinel role of mucosal dendritic cells and their importance in induction of T cell responses we investigated the effect of different S. suis serotype strains and an isogenic capsule mutant of serotype 2 on the maturation, activation and expression of IL-10, IL-12p70 and TNF-α in human monocyte-derived dendritic cells. Additionally, we compared phagocytosis levels and bacterial survival after internalization. The capsule of serotype 2, the most common serotype associated with infection in humans and pigs, was highly anti-phagocytic and modulated the IL-10/IL-12 and IL-10/TNF-α cytokine production in favor of a more anti-inflammatory profile compared to other serotypes. This may have consequences for the induction of effective immunity to S. suis serotype 2 in humans. A shielding effect of the capsule on innate Toll-like receptor signaling was also demonstrated. Furthermore, we showed that 24 h after phagocytosis, significant numbers of viable intracellular S. suis were still present intracellularly. This may contribute to the dissemination of S. suis in the body

    Effects of in vitro fermentation of barley β-glucan and sugar beet pectin using human fecal inocula on cytokine expression by dendritic cells

    Get PDF
    Scope: This study simulates the fermentation process of barley β-glucan and sugar beet pectin in the human colon and monitors the degradation products formed. Additionally, immune effects of the degradation products were investigated. Methods and results: Immunostimulatory activity of fermentation digesta was investigated using bone marrow derived dendritic cells (BMDCs) from toll-like receptor 2/4 (TLR2/4) knockout mice, which were unresponsive to microbe-associated molecular patterns. Cytokine responses were elicited to dietary fibers and not to the SCFA and microbiota. The fermentation digesta were analyzed for their SCFA profiles and glycan metabolites over time. During fermentation the amount of insoluble precipitating fibers increased and induced as well as soluble molecules of lower molecular mass greater amounts of cytokines in BMDCs than the parental fiber. Additionally, high amounts of cytokines can be attributed to soluble galactose-rich beet pectin molecules. Conclusions: The fermentation of the two fibers led to fiber-specific amounts of SCFA, glycosidic metabolites, and different immunomodulatory properties. BMDC from TLR2/4 knockout mice did not respond to the digest microbiota and SCFA, making it a useful approach to study temporal effects of fermentation on the immunomodulatory effects of fibers.</p

    Transcriptomic analysis of intestinal organoids, derived from pigs divergent in feed efficiency, and their response to Escherichia coli

    No full text
    Abstract Background There is increasing interest in using intestinal organoids to study complex traits like feed efficiency (FE) and host-microbe interactions. The aim of this study was to investigate differences in the molecular phenotype of organoids derived from pigs divergent for FE as well as their responses to challenge with adherent and invasive Escherichia coli (E. coli). Results Colon and ileum tissue from low and high FE pigs was used to generate 3D organoids and two dimensional (2D) monolayers of organoid cells for E. coli challenge. Genome-wide gene expression was used to investigate molecular differences between pigs that were phenotypically divergent for FE and to study the difference in gene expression after challenge with E. coli. We showed, (1) minor differences in gene expression of colon organoids from pigs with low and high FE phenotypes, (2) that an E. coli challenge results in a strong innate immune gene response in both colon and ileum organoids, (3) that the immune response seems to be less pronounced in the colon organoids of high FE pigs and (4) a slightly stronger immune response was observed in ileum than in colon organoids. Conclusions These findings demonstrate the potential for using organoids to gain insights into complex biological mechanisms such as FE

    Structure dependent-immunomodulation by sugar beet arabinans via a SYK tyrosine kinase-dependent signaling pathway

    No full text
    There is much interest in the immunomodulatory properties of dietary fibers but their activity may be influenced by contamination with microbial-Associated molecular patterns (MAMPs) such as lipopolysaccharide (LPS) and lipoteichoic acids, which are difficult to remove completely from biological samples. Bone marrow-derived dendritic cells (BMDCs) from TLR2x4 double-KO mice were shown to be a reliable approach to analyse the immunomodulatory properties of a diverse range of dietary fibers, by avoiding immune cell activation due to contaminating MAMPs. Several of the 44 tested dietary fiber preparations induced cytokine responses in BMDCs from TLR2x4 double-KO mice. The particulate fractions of linear arabinan (LA) and branched arabinan (BA) from sugar beet pectin were shown to be strongly immune stimulatory with LA being more immune stimulatory than BA. Enzymatic debranching of BA increased its immune stimulatory activity, possibly due to increased particle formation by the alignment of debranched linear arabinan. Mechanistic studies showed that the immunostimulatory activity of LA and BA was independent of the Dectin-1 recognition but Syk kinase-dependent.</p

    Transcriptome profiling of porcine jejunum tissue, its derived organoids over long-term culture, and transformed cell line IPECJ2 as reference model

    No full text
    Purpose: Organoids are gaining more traction as physiologically relevant models for host physiology, but their transcriptional stability has not been identified over long term culture. Comparing this to its host-derived tissue and a transformed cell line of this intestinal location could provide insight into the stability and maintenance of cellular programs in vitro. Methods: Jejunum organoids were derived from 2 5-week old piglets, and grown separately in triplicate for 3 and 12 weeks. Tissue homogenate, organoids from both time points (divided in triplicate at start of experiment to monitor culture-dependent variability) and three IPEC-J2 passage rates were isolated for RNA using an RNEasy mini kit following manufacturers protocols. Results: RNA was enriched for PolyA and sequenced on an illumina sequencer. Reads were checked for quality, trimmed, and mapped following the tuxedo suite pipeline (modified to fit our parameters) and CLC Genomics Workbench to identify unknown gene locations. Conclusions: Organoids cultured for 12 weeks showed strong inter- and intra variability, congruence between independent cultures, and strong epithelial resemblance to host tissues. It further exemplified a more extensive transcriptome than IPEC-J2, showing more physiologically relevant genes

    Strain-specific features of extracellular polysaccharides and their impact on Lactobacillus plantarum-host interactions

    No full text
    Lactobacilli are found in diverse environments and are widely applied as probiotic, health-promoting food supplements. Polysaccharides are ubiquitously present on the cell surface of lactobacilli and are considered to contribute to the species- and strainspecific probiotic effects that are typically observed. Two Lactobacillus plantarum strains, SF2A35B and Lp90, have an obvious ropy phenotype, implying high extracellular polysaccharide (EPS) production levels. In this work, we set out to identify the genes involved in EPS production in these L. plantarum strains and to demonstrate their role in EPS production by gene deletion analysis. A model L. plantarum strain, WCFS1, and its previously constructed derivative that produced reduced levels of EPS were included as reference strains. The constructed EPS-reduced derivatives were analyzed for the abundance and sugar compositions of their EPS, revealing cps2-like gene clusters in SF2A35B and Lp90 responsible for major EPS production. Moreover, these mutant strains were tested for phenotypic characteristics that are of relevance for their capacity to interact with the host epithelium in the intestinal tract, including bacterial surface properties as well as survival under the stress conditions encountered in the gastrointestinal tract (acid and bile stress). In addition, the Toll-like receptor 2 (TLR2) signaling and immunomodulatory capacities of the EPS-negative derivatives and their respective wild-type strains were compared, revealing strain-specific impacts of EPS on the immunomodulatory properties. Taken together, these experiments illustrate the importance of EPS in L. plantarum strains as a strain-specific determinant in host interaction.</p
    corecore