127 research outputs found

    Effects of scallop shell extract on scopolamine-induced memory impairment and MK801-induced locomotor activity

    Get PDF
    ObjectiveTo evaluate the neuroprotective effects of the organic components of scallop shells (scallop shell extract) on memory impairment and locomotor activity induced by scopolamine or 5-methyl-10,11-dihydro-5H-dibenzo (a,d) cyclohepten-5,10-imine (MK801).MethodsEffect of the scallop shell extract on memory impairment and locomotor activity was investigated using the Y-maze test, the Morris water maze test, and the open field test.ResultsScallop shell extract significantly reduced scopolamine-induced short-term memory impairment and partially reduced scopolamine-induced spatial memory impairment in the Morris water maze test. Scallop shell extract suppressed scopolamine-induced elevation of acetylcholine esterase activity in the cerebral cortex. Treatment with scallop shell extract reversed the increase in locomotor activity induced by scopolamine. Scallop shell extract also suppressed the increase in locomotor activity induced by MK801.ConclusionsOur results provide initial evidence that scallop shell extract reduces scopolamine-induced memory impairment and suppresses MK-801-induced hyperlocomotion

    The effects of exercise and passive heating on the sweat glands ion reabsorption rates

    Get PDF
    The sweat glands maximum ion reabsorption rates were investigated (n = 12, 21.7 ± 3.0 years, 59.4 ± 9.8 kg, 166.9 ± 10.4 cm and 47.1 ± 7.5 mL/kg/min) during two separate endogenous protocols; cycling at 30% (LEX) and 60% VO2max(MEX) and one exogenous trial; passive heating (PH) (43°C water lower leg immersion) in 27°C, 50%RH. Oesophageal temperature (Tes), skin temperature (Tsk), and forearm, chest and lower back sweat rate (SR) and galvanic skin conductance (GSC) were measured. Salivary aldosterone was measured pre-and postheating (n = 3). Using the ∆SR threshold for an increasing ∆GSC to identify maximum sweat ion reabsorption rate revealed higher reabsorption rates during MEX compared to PH (mean of all regions: 0.63 ± 0.28 vs. 0.44 ± 0.3 mg/cm2/min, P  0.05). Aldosterone increased more during MEX (72.8 ± 36.6 pg/mL) compared to PH (39.2 ± 17.5 pg/mL) and LEX (1.8 ± 9.7 pg/mL). The back had a higher threshold than the forearm (P  0.05) (mean of all conditions; 0.64 ± 0.33, 0.42 ± 0.25, 0.54 ± 0.3 mg/cm2/min, respectively). Although the differences between conditions may be influenced by thermal or nonthermal mechanism, our results indicate a possibility that the sweat glands maximum ion reabsorption rates may be different between exercise and passive heating without mediating skin regional differences

    The influence of local skin temperature on the sweat glands maximum ion reabsorption rate

    Get PDF
    PURPOSE: Changes in mean skin temperature (Tsk) have been shown to modify the maximum rate of sweat ion reabsorption. This study aims to extend this knowledge by investigating if modifications could also be caused by local Tsk. METHODS: The influence of local Tsk on the sweat gland maximum ion reabsorption rates was investigated in ten healthy volunteers (three female and seven male; 20.8 ± 1.2 years, 60.4 ± 7.7 kg, 169.4 ± 10.4 cm) during passive heating (water-perfused suit and lower leg water immersion). In two separate trials, in a randomized order, one forearm was always manipulated to 33 °C (Neutral), whilst the other was manipulated to either 30 °C (Cool) or 36 °C (Warm) using water-perfused patches. Oesophageal temperature (Tes), forearm Tsk, sweat rate (SR), galvanic skin conductance (GSC) and salivary aldosterone concentrations were measured. The sweat gland maximum ion reabsorption rates were identified using the ∆SR threshold for an increasing ∆GSC. RESULTS: Thermal [Tes and body temperature (Tb)] and non-thermal responses (aldosterone) were similar across all conditions (p > 0.05). A temperature-dependent response for the sweat gland maximum ion reabsorption rates was evident between 30 °C (0.18 ± 0.10 mg/cm2/min) and 36 °C (0.28 ± 0.14 mg/cm2/min, d = 0.88, p  0.05. CONCLUSION: The data indicate that small variations in local Tsk may not affect the sweat gland maximum ion reabsorption rates but when the local Tsk increases by > 6 °C, ion reabsorption rates also increase

    Do nitric oxide synthase and cyclooxygenase contribute to sweating response during passive heating in endurance‐trained athletes?

    Get PDF
    The aim of our study was to determine if habitual endurance training can influence the relative contribution of nitric oxide synthase (NOS) and cyclooxygenase (COX) in the regulation of sweating during a passive heat stress in young adults. Ten trained athletes and nine untrained counterparts were passively heated until oral temperature (as estimated by sublingual temperature, Tor) increased by 1.5°C above baseline resting. Forearm sweat rate (ventilated capsule) was measured at three skin sites continuously perfused with either lactated Ringer\u27s solution (Control), 10 mmol/L NG‐nitro‐L‐arginine methyl ester (L‐NAME, non‐selective NOS inhibitor), or 10 mmol/L ketorolac (Ketorolac, non‐selective COX inhibitor) via intradermal microdialysis. Sweat rate was averaged for each 0.3°C increase in Tor. Sweat rate at the L‐NAME site was lower than Control following a 0.9 and 1.2°C increase in Tor in both groups (all P ≤ 0.05). Relative to the Control site, NOS‐inhibition reduced sweating similarly between the groups (P = 0.51). Sweat rate at the Ketorolac site was not different from the Control at any levels of Tor in both groups (P > 0.05). Nevertheless, a greater sweat rate was measured at the end of heating in the trained as compared to the untrained individuals (P ≤ 0.05). We show that NOS contributes similarly to sweating in both trained and untrained individuals during a passive heat stress. Further, no effect of COX on sweating was measured for either group. The greater sweat production observed in endurance‐trained athletes is likely mediated by factors other than NOS‐ and COX‐dependent mechanisms

    Dispersion of single-walled carbon nanotubes modified with poly-l-tyrosine in water

    Get PDF
    In this study, complexes composed of poly-l-tyrosine (pLT) and single-walled carbon nanotubes (SWCNTs) were produced and the dispersibility of the pLT/SWCNT complexes in water by measuring the ζ potential of the complexes and the turbidity of the solution were investigated. It is found that the absolute value of the ζ potential of the pLT/SWCNT complexes is as high as that of SWCNTs modified with double-stranded DNA (dsDNA) and that the complexes remain stably dispersed in the water at least for two weeks. Thermogravimetry analysis (TGA) and visualization of the surface structures of pLT/SWCNT complexes using an atomic force microscope (AFM) were also carried out

    Structure of the dopamine D2 receptor in complex with the antipsychotic drug spiperone

    Get PDF
    統合失調症に関わるドパミン受容体の構造解明 --副作用を抑えた薬の迅速な探索・設計が可能に--. 京都大学プレスリリース. 2020-12-24.In addition to the serotonin 5-HT2A receptor (5-HT2AR), the dopamine D2 receptor (D2R) is a key therapeutic target of antipsychotics for the treatment of schizophrenia. The inactive state structures of D2R have been described in complex with the inverse agonists risperidone (D2Rris) and haloperidol (D2Rhal). Here we describe the structure of human D2R in complex with spiperone (D2Rspi). In D2Rspi, the conformation of the extracellular loop (ECL) 2, which composes the ligand-binding pocket, was substantially different from those in D2Rris and D2Rhal, demonstrating that ECL2 in D2R is highly dynamic. Moreover, D2Rspi exhibited an extended binding pocket to accommodate spiperone’s phenyl ring, which probably contributes to the selectivity of spiperone to D2R and 5-HT2AR. Together with D2Rris and D2Rhal, the structural information of D2Rspi should be of value for designing novel antipsychotics with improved safety and efficacy
    corecore