173 research outputs found

    Androgen Regulated Genes in Human Prostate Xenografts in Mice: Relation to BPH and Prostate Cancer

    Get PDF
    Benign prostatic hyperplasia (BPH) and prostate carcinoma (CaP) are linked to aging and the presence of androgens, suggesting that androgen regulated genes play a major role in these common diseases. Androgen regulation of prostate growth and development depends on the presence of intact epithelial-stromal interactions. Further, the prostatic stroma is implicated in BPH. This suggests that epithelial cell lines are inadequate to identify androgen regulated genes that could contribute to BPH and CaP and which could serve as potential clinical biomarkers. In this study, we used a human prostate xenograft model to define a profile of genes regulated in vivo by androgens, with an emphasis on identifying candidate biomarkers. Benign transition zone (TZ) human prostate tissue from radical prostatectomies was grafted to the sub-renal capsule site of intact or castrated male immunodeficient mice, followed by the removal or addition of androgens, respectively. Microarray analysis of RNA from these tissues was used to identify genes that were; 1) highly expressed in prostate, 2) had significant expression changes in response to androgens, and, 3) encode extracellular proteins. A total of 95 genes meeting these criteria were selected for analysis and validation of expression in patient prostate tissues using quantitative real-time PCR. Expression levels of these genes were measured in pooled RNAs from human prostate tissues with varying severity of BPH pathologic changes and CaP of varying Gleason score. A number of androgen regulated genes were identified. Additionally, a subset of these genes were over-expressed in RNA from clinical BPH tissues, and the levels of many were found to correlate with disease status. Our results demonstrate the feasibility, and some of the problems, of using a mouse xenograft model to characterize the androgen regulated expression profiles of intact human prostate tissues

    Paradoxical expression of IL-28B mRNA in peripheral blood in human T-cell leukemia virus Type-1 mono-infection and co-infection with hepatitis C Virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human T-cell leukemia virus type-1 (HTLV-1) carriers co-infected with and hepatitis C virus (HCV) have been known to be at higher risk of their related diseases than mono-infected individuals. The recent studies clarified that IL-28B polymorphism rs8099917 is associated with not only the HCV therapeutic response by IFN, but also innate immunity and antiviral activity. The aim of our research was to clarify study whether IL-28B gene polymorphism (rs8099917) is associated with HTLV-1/HCV co-infection.</p> <p>Results</p> <p>The genotyping and viral-serological analysis for 340 individuals showed that IL-28B genotype distribution of rs8099917 SNP did not differ significantly by respective viral infection status. However, the IL-28B mRNA expression level was 3.8 fold higher in HTLV-1 mono-infection than HTLV-1/HCV co-infection. The high expression level was associated with TT (OR, 6.25), whiles the low expression was associated with co-infection of the two viruses (OR, 9.5). However, there was no association between down-regulation and ATL development (OR, 0.8).</p> <p>Conclusion</p> <p>HTLV-1 mono-infection up-regulates the expression of IL-28B transcripts in genotype-dependent manner, whiles HTLV-1/HCV co-infection down-regulates regardless of ATL development.</p

    Source-based nomenclature for single-strand homopolymers and copolymers (IUPAC Recommendations 2016)

    Get PDF
    IUPAC recommendations on source-based nomenclature for single-strand polymers have so far addressed its application mainly to copolymers, non-linear polymers and polymer assemblies, and within generic source-based nomenclature of polymers. In this document, rules are formulated for devising a satisfactory source-based name for a polymer, whether homopolymer or copolymer, which are as clear and rigorous as possible. Thus, the source-based system for naming polymers is presented in a totality that serves as a user-friendly alternative to the structure-based system of polymer nomenclature. In addition, because of their widespread and established use, recommendations for the use of traditional names of polymers are also elaborated

    Pitfalls in machine learning‐based assessment of tumor‐infiltrating lymphocytes in breast cancer: a report of the international immuno‐oncology biomarker working group

    Get PDF
    The clinical significance of the tumor-immune interaction in breast cancer (BC) has been well established, and tumor-infiltrating lymphocytes (TILs) have emerged as a predictive and prognostic biomarker for patients with triple-negative (estrogen receptor, progesterone receptor, and HER2 negative) breast cancer (TNBC) and HER2-positive breast cancer. How computational assessment of TILs can complement manual TIL-assessment in trial- and daily practices is currently debated and still unclear. Recent efforts to use machine learning (ML) for the automated evaluation of TILs show promising results. We review state-of-the-art approaches and identify pitfalls and challenges by studying the root cause of ML discordances in comparison to manual TILs quantification. We categorize our findings into four main topics; (i) technical slide issues, (ii) ML and image analysis aspects, (iii) data challenges, and (iv) validation issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by performance on certain tissue patterns, or design choices in the computational implementation. To aid the adoption of ML in TILs assessment, we provide an in-depth discussion of ML and image analysis including validation issues that need to be considered before reliable computational reporting of TILs can be incorporated into the trial- and routine clinical management of patients with TNBC

    Distinct role of T helper Type 17 immune response for Graves\u27 hyperthyroidism in mice with different genetic backgrounds.

    Get PDF
    T helper type 17 (Th17) cells, a newly identified effector T-cell subset, have recently been shown to play a role in numerous autoimmune diseases, including iodine-induced autoimmune thyroiditis in non-obese diabetic (NOD)-H2(h4) mice, which had previously been thought Th1-dominant. We here studied the role of Th17 in Graves\u27 hyperthyroidism, another thyroid-specific autoimmune disease, in a mouse model. Two genetically distinct BALB/c and NOD-H2(h4) strains with intact or disrupted IL-17 genes (IL-17(+/+) or IL-17(-/-)) were immunized with adenovirus (Ad) expressing the thyrotropin receptor (TSHR) A-subunit (Ad-TSHR289). Both IL-17(+/+) and IL-17(-/-) mice developed anti-TSHR antibodies and hyperthyroidism at equally high frequencies on the BALB/c genetic background. In contrast, some IL-17(+/+), but none of IL-17(-/-), mice became hyperthyroid on the NOD-H2(h4) genetic background, indicating the crucial role of IL-17 for development of Graves\u27 hyperthyroidism in non-susceptible NOD-H2(h4), but not in susceptible BALB/c mice. In the T-cell recall assay, splenocytes and lymphocytes from the draining lymph nodes from either mouse strains, irrespective of IL-17 gene status, produced IFN-Îł and IL-10 but not other cytokines including IL-17 in response to TSHR antigen. Thus, the functional significance of Th17 may not necessarily be predictable from cytokine expression patterns in splenocytes or inflammatory lesions. In conclusion, this is, to our knowledge, the first report showing that the role of Th17 cells for the pathogenesis of a certain autoimmune disease depends on the mouse genetic backgrounds

    Tumor Marker Levels Before and After Curative Treatment of Hepatocellular Carcinoma as Predictors of Patient Survival.

    Get PDF
    BACKGROUND: α-fetoprotein (AFP) is used as a marker for hepatocellular carcinoma (HCC), which is influenced by hepatitis. Protein-induced vitamin K absence or antagonist II (PIVKA-II) is a sensitive diagnostic marker. Changes in these markers after treatment may reflect curability and predict outcome. METHODS: We conducted an analysis of prognosis in 470 HCC patients who received curative treatments, and examined the relationship between changes in AFP and PIVKA-II levels after 1 month of treatment in 156 patients. Subjects were divided into three groups according to changes in both levels: (1) normal (L) group before treatment, (2) normalization (N) or (3) decreased but still above normal level or unchanged (ANU) group after treatment. RESULTS: High AFP and PIVKA-II levels were significantly associated with poor tumor-free and overall survival. The presence of large size and advanced stage were significantly associated with prevalence of DU group. Overall survival in the AFP-L group was significantly better than that of other groups and overall survival in PIVKA-II-L and N groups were significantly better than that of the PIVKA-II-ANU groups. The combination of changes in the AFP- ANU and PIVKA-II- ANU groups showed the worst tumor-free and overall survivals. Multivariate analysis identified high pre-treatment levels of AFP and PIVKA-II and combination of AFP- ANU and PIVKA-II- ANU as significant determinants of poor tumor-free and overall survival, particularly in patients who underwent hepatectomy. CONCLUSION: We conclude that high levels of AFP or PIVKA-II after treatment for HCC did not sufficiently reflect curative efficacy of treatment and reflected a poor predictor of prognosis in HCC patients

    The effect of regulatory T-cell depletion on the spectrum of organ-specific autoimmune diseases in nonobese diabetic mice at different ages.

    Get PDF
    The nonobese diabetic (NOD) mouse spontaneously develops several autoimmune diseases, including type 1 diabetes and to a lesser extent thyroiditis and sialitis. Imbalance between effector T cells (Teffs) and regulatory T cells (Tregs) has recently been proposed as a mechanism for the disease pathogenesis in NOD mice, but previous studies have shown the various outcomes by different timing and methods of Treg-depletion. This study was, therefore, designed to compare the consequences of Treg-depletion by the same method (anti-CD25 antibody) on the spectrum of organ-specific autoimmune diseases in NOD mice of different ages. Treg-depletion by anti-CD25 antibody at 10 days of age accelerated development of all three diseases we examined (insulitis/diabetes, thyroiditis, and sialitis); Treg-depletion at 4 weeks of age accelerated only diabetes but not thyroiditis or sialitis; and Treg-depletion at 12 weeks of age hastened only development of thyroiditis and exhibited little influence on diabetes or sialitis. Increased levels of insulin autoantibodies (IAA) were, however, observed in mice depleted of Tregs at 10 days of age, not in those at 4 weeks. Thus, the consequences of Treg-depletion on the spectrum of organ-specific autoimmune diseases depend on the timing of anti-CD25 antibody injection in NOD mice. Aging gradually tips balance between Teffs and Tregs toward Teff-dominance for diabetes, but this balance for thyroiditis and sialitis likely alters more intricately. Our data also suggest that the levels of IAA are not necessarily correlated with diabetes development
    • 

    corecore