77 research outputs found

    Insecticidal action of the combined use of spinosad and deltamethrin against three storedproduct pests in two stored hard-wheat varieties.

    Get PDF
    The combined use of spinosad with deltamethrin against adults of Sitophilus oryzae, Sitophilus granarius and Tribolium confusum was evaluated in a series of laboratory bioassays in two hard wheat varieties (Athos and Sifnos). Two groups of bioassays were carried out. In the first group of bioassays, spinosad or deltamethrin were applied alone at the tested wheat varieties at the doses of 0.01, 0.1 and 0.5 ppm for spinosad and 0.125 ppm for deltamethrin. In the second group of bioassays, the tested wheat varieties were treated with the combination of the above spinosad rates with 0.125 of deltamethrin. In both series of bioassays, mortality of the tested species was evaluated after 7 d of exposure on the treated wheat varieties at 25oC and 65% r.h. Mortality for all species was always significantly higher in Athos than Sifnos. The highest mortality of S. oryzae (73 and 40% for Athos and Sifnos respectively) or S. granarius (88% and 58% for Athos and Sifnos respectively) was recorded in the cases that spinosad was applied alone at 0.5 ppm. On the contrary, in the case of T. confusum, 0.125 ppm of deltamethrin was significantly more effective than any of the application rates of spinosad either when applied alone or in combination with deltamethrin. Despite the fact that the highest mortality of S. granarius adults was recorded after exposure on the wheat varieties treated with 0.1 ppm of spinosad x 0.125 ppm of deltamethrin, in light of the results of the present study, the combination of spinosad with deltmethrin requires further investigation since in most of the tested cases of the present study, single application of spinosad or deltamethrin was more effective or of equal effectiveness than the respective combination of spinosad with deltamethrin. Keywords: Spinosad, Deltamethrin, Tribolium, Sitophilus, Wheat, Variet

    Lignin-Based Polymer Electrolyte Membranes for Sustainable Aqueous Dye-Sensitized Solar Cells

    Get PDF
    In the quest for sustainable materials for quasi-solid-state (QS) electrolytes in aqueous dye-sensitized solar cells (DSSCs), novel bioderived polymeric membranes were prepared in this work by reaction of preoxidized kraft lignin with poly(ethylene glycol)diglycidylether (PEGDGE). The effect of the PEGDGE/lignin relative proportions on the characteristics of the obtained membranes was thoroughly investigated, and clear structure–property correlations were highlighted. In particular, the glass transition temperature of the materials was found to decrease by increasing the amount of PEGDGE in the formulation, indicating that polyethylene glycol chains act as flexible segments that increase the molecular mobility of the three-dimensional polymeric network. Concurrently, their swelling ability in liquid electrolyte was found to increase with the concentration of PEGDGE, which was also shown to influence the ionic transport efficiency within the membrane. The incorporation of these lignin-based cross-linked systems as QS electrolyte frameworks in aqueous DSSCs allowed the preparation of devices with excellent long-term stability under UV–vis light, which were found to be superior to benchmark QS-DSSCs incorporating state-of-the-art carboxymethylcellulose membranes. This study provides the first demonstration of lignin-based QS electrolytes for stable aqueous DSSCs, establishing a straightforward strategy to exploit the potential of lignin as a functional polymer precursor for the field of sustainable photovoltaic devices

    Manipulating thermal light via displaced-photon subtraction

    Get PDF
    Thermal radiation played a pivotal role in the preliminary development of quantum physics where it helped resolve the apparent incongruity of the ultraviolet catastrophe. In contemporary physics, thermal state generation and manipulation finds new application in fields such as quantum imaging and quantum illumination and as a practical realization of Maxwell's demon. These applications often go hand in hand with photon subtraction operations which probabilistically amplify the mean photon number (MPN) of thermal light as a result of its super-Poissonian photon statistics. In this article, we introduce an operation for thermal states of light based on a generalized photon subtraction scheme. Displaced-photon subtraction (DPS) makes use of coherent state displacement followed by a subsequent anti-displacement in combination with single-photon detection to probe the MPN of a thermal state. We find regimes in which the output of a successful DPS is amplified, unchanged, or attenuated relative to the unconditioned output state. The regime of operation is controlled via the magnitude of the coherent displacement. A theoretical description of generalized photon subtraction of a displaced thermal state is derived via a two-mode moment-generating function (MGF) and used to describe generalized DPS. We perform a proof of principle experimental implementation of DPS for the case of a balanced beam splitter for which results demonstrate good agreement with the model

    Structural and vibrational study of pseudocubic CdIn2Se4 under compression

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/jp5077565We report a comprehensive experimental and theoretical study of the structural and vibrational properties of a-CdIn2Se4 under compression. Angle-dispersive synchrotron X-ray diffraction and Raman spectroscopy evidence that this ordered-vacancy compound with pseudocubic structure undergoes a phase transition (7 GPa) toward a disordered rocksalt structure as observed in many other ordered-vacancy compounds. The equation of state and the pressure dependence of the Raman-active modes of this semiconductor have been determined and compared both to ab initio total energy and lattice dynamics calculations and to related compounds. Interestingly, on decreasing pressure, at similar to 2 GPa, CdIn2Se4 transforms into a spinel structure which, according to calculations, is energetically competitive with the initial pseudocubic phase. The phase behavior of this compound under compression and the structural and compressibility trends in AB(2)Se(4) selenides are discussed.This study was supported by the Spanish government MEC under Grant Nos: MAT2013-46649-C4-3-P, MAT2013-46649-C4-2-P, MAT2010-21270-C04-03/04, and CTQ2009-14596-C02-01, by MALTA Consolider Ingenio 2010 Project (CSD2007-00045) and by Generalitat Valenciana (GVA-ACOMP-2013-1012). A.M. and P.R-H. acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster, and also to S. Munoz-Rodriguez for providing a data-parsing application. J.A.S. acknowledges Juan de la Cierva fellowship program for financial support.Santamaría Pérez, D.; Gomis, O.; Pereira, ALJ.; Vilaplana Cerda, RI.; Popescu, C.; Sans Tresserras, JÁ.; Manjón Herrera, FJ.... (2014). Structural and vibrational study of pseudocubic CdIn2Se4 under compression. Journal of Physical Chemistry C. 118(46):26987-26999. https://doi.org/10.1021/jp5077565S26987269991184

    Lattice dynamics study of HgGa2Se4 at high pressures

    Full text link
    We report on Raman scattering measurements in mercury digallium selenide (HgGa2Se4) up to 25 GPa. We also performed, for the low-pressure defect-chalcopyrite structure, lattice-dynamics ab initio calculations at high pressures which agree with experiments. Measurements evidence that the semiconductor HgGa2Se4 exhibits a pressure-induced phase transition above 19 GPa to a previously undetected structure. This transition is followed by a transformation to a Raman-inactive phase above 23.4 GPa. On downstroke from 25 GPa until 2.5 GPa, a broad Raman spectrum was observed, which has been attributed to a fourth phase, and whose pressure dependence was followed during a second upstroke. Candidate structures for the three phases detected under compression are proposed. Finally, we also report and discuss the decomposition of the sample by laser heating at pressures close to 19 GPa. As possible products of decomposition, we have identified at least the formation of trigonal selenium nanoclusters and cinnabar-type HgSe.This study was supported by the Spanish government MEC under Grant No. MAT2010-21270-004-01/03/04, by MALTA Consolider Ingenio 2010 project (CSD2007-00045), by Generalitat Valenciana through project GVA-ACOMP-2013-012, and by the Vicerrectorado de Investigacion y Desarrollo of the Universidad Politecnica de Valencia (UPV2011-0966 and UPV2011-0914). E.P.-G., J.L.-S., A.M., and P.R.-H. acknowledge computing time provided by Red Espanola de Super-computacion (RES) and MALTA-Cluster.Vilaplana Cerda, RI.; Gomis Hilario, O.; Manjón Herrera, FJ.; Ortiz, HM.; Pérez González, E.; López Solano, J.; Rodríguez Hernández, P.... (2013). Lattice dynamics study of HgGa2Se4 at high pressures. Journal of Physical Chemistry C. 117(30):15773-15781. https://doi.org/10.1021/jp402493rS15773157811173

    Inborn errors of OAS-RNase L in SARS-CoV-2-related multisystem inflammatory syndrome in children

    Get PDF
    Multisystem inflammatory syndrome in children (MIS-C) is a rare and severe condition that follows benign COVID-19. We report autosomal recessive deficiencies of OAS1, OAS2, or RNASEL in five unrelated children with MIS-C. The cytosolic double-stranded RNA (dsRNA)-sensing OAS1 and OAS2 generate 2'-5'-linked oligoadenylates (2-5A) that activate the single-stranded RNA-degrading ribonuclease L (RNase L). Monocytic cell lines and primary myeloid cells with OAS1, OAS2, or RNase L deficiencies produce excessive amounts of inflammatory cytokines upon dsRNA or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stimulation. Exogenous 2-5A suppresses cytokine production in OAS1-deficient but not RNase L-deficient cells. Cytokine production in RNase L-deficient cells is impaired by MDA5 or RIG-I deficiency and abolished by mitochondrial antiviral-signaling protein (MAVS) deficiency. Recessive OAS-RNase L deficiencies in these patients unleash the production of SARS-CoV-2-triggered, MAVS-mediated inflammatory cytokines by mononuclear phagocytes, thereby underlying MIS-C

    Higher COVID-19 pneumonia risk associated with anti-IFN-α than with anti-IFN-ω auto-Abs in children

    Full text link
    We found that 19 (10.4%) of 183 unvaccinated children hospitalized for COVID-19 pneumonia had autoantibodies (auto-Abs) neutralizing type I IFNs (IFN-alpha 2 in 10 patients: IFN-alpha 2 only in three, IFN-alpha 2 plus IFN-omega in five, and IFN-alpha 2, IFN-omega plus IFN-beta in two; IFN-omega only in nine patients). Seven children (3.8%) had Abs neutralizing at least 10 ng/ml of one IFN, whereas the other 12 (6.6%) had Abs neutralizing only 100 pg/ml. The auto-Abs neutralized both unglycosylated and glycosylated IFNs. We also detected auto-Abs neutralizing 100 pg/ml IFN-alpha 2 in 4 of 2,267 uninfected children (0.2%) and auto-Abs neutralizing IFN-omega in 45 children (2%). The odds ratios (ORs) for life-threatening COVID-19 pneumonia were, therefore, higher for auto-Abs neutralizing IFN-alpha 2 only (OR [95% CI] = 67.6 [5.7-9,196.6]) than for auto-Abs neutralizing IFN-. only (OR [95% CI] = 2.6 [1.2-5.3]). ORs were also higher for auto-Abs neutralizing high concentrations (OR [95% CI] = 12.9 [4.6-35.9]) than for those neutralizing low concentrations (OR [95% CI] = 5.5 [3.1-9.6]) of IFN-omega and/or IFN-alpha 2
    corecore