19 research outputs found

    Derivatives of 9-phosphorylated acridine as butyrylcholinesterase inhibitors with antioxidant activity and the ability to inhibit β-amyloid self-aggregation: potential therapeutic agents for Alzheimer’s disease

    Get PDF
    We investigated the inhibitory activities of novel 9-phosphoryl-9,10-dihydroacridines and 9-phosphorylacridines against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and carboxylesterase (CES). We also studied the abilities of the new compounds to interfere with the self-aggregation of β-amyloid (Aβ42) in the thioflavin test as well as their antioxidant activities in the ABTS and FRAP assays. We used molecular docking, molecular dynamics simulations, and quantum-chemical calculations to explain experimental results. All new compounds weakly inhibited AChE and off-target CES. Dihydroacridines with aryl substituents in the phosphoryl moiety inhibited BChE; the most active were the dibenzyloxy derivative 1d and its diphenethyl bioisostere 1e (IC50 = 2.90 ± 0.23 µM and 3.22 ± 0.25 µM, respectively). Only one acridine, 2d, an analog of dihydroacridine, 1d, was an effective BChE inhibitor (IC50 = 6.90 ± 0.55 μM), consistent with docking results. Dihydroacridines inhibited Aβ42 self-aggregation; 1d and 1e were the most active (58.9% ± 4.7% and 46.9% ± 4.2%, respectively). All dihydroacridines 1 demonstrated high ABTS•+-scavenging and iron-reducing activities comparable to Trolox, but acridines 2 were almost inactive. Observed features were well explained by quantum-chemical calculations. ADMET parameters calculated for all compounds predicted favorable intestinal absorption, good blood–brain barrier permeability, and low cardiac toxicity. Overall, the best results were obtained for two dihydroacridine derivatives 1d and 1e with dibenzyloxy and diphenethyl substituents in the phosphoryl moiety. These compounds displayed high inhibition of BChE activity and Aβ42 self-aggregation, high antioxidant activity, and favorable predicted ADMET profiles. Therefore, we consider 1d and 1e as lead compounds for further in-depth studies as potential anti-AD preparations

    Major Factors Affecting Incidence of Childhood Thyroid Cancer in Belarus after the Chernobyl Accident: Do Nitrates in Drinking Water Play a Role?

    Get PDF
    One of the major health consequences of the Chernobyl Nuclear Power Plant accident in 1986 was a dramatic increase in incidence of thyroid cancer among those who were aged less than 18 years at the time of the accident. This increase has been directly linked in several analytic epidemiological studies to iodine-131 (131I) thyroid doses received from the accident. However, there remains limited understanding of factors that modify the 131Irelated risk. Focusing on post-Chernobyl pediatric thyroid cancer in Belarus, we reviewed evidence of the effects of radiation, thyroid screening, and iodine deficiency on regional differences in incidence rates of thyroid cancer. We also reviewed current evidence on content of nitrate in groundwater and thyroid cancer risk drawing attention to high levels of nitrates in open well water in several contaminated regions of Belarus, i.e. Gomel and Brest, related to the usage of nitrogen fertilizers. In this hypothesis generating study, based on ecological data and biological plausibility, we suggest that nitrate pollution may modify the radiationrelated risk of thyroid cancer contributing to regional differences in rates of pediatric thyroid cancer in Belarus. Analytic epidemiological studies designed to evaluate joint effect of nitrate content in groundwater and radiation present a promising avenue of research and may provide useful insights into etiology of thyroid cancer

    Brain-related genes are specifically enriched with long phase 1 introns.

    No full text
    Intronic gene regions are mostly considered in the scope of gene expression regulation, such as alternative splicing. However, relations between basic statistical properties of introns are much rarely studied in detail, despite vast available data. Particularly, little is known regarding the relationship between the intron length and the intron phase. Intron phase distribution is significantly different at different intron length thresholds. In this study, we performed GO enrichment analysis of gene sets with a particular intron phase at varying intron length thresholds using a list of 13823 orthologous human-mouse gene pairs. We found a specific group of 153 genes with phase 1 introns longer than 50 kilobases that were specifically expressed in brain, functionally related to synaptic signaling, and strongly associated with schizophrenia and other mental disorders. We propose that the prevalence of long phase 1 introns arises from the presence of the signal peptide sequence and is connected with 1-1 exon shuffling

    Molecular Dynamics Modeling of the Conductivity of Lithiated Nafion Containing Nonaqueous Solvents

    Get PDF
    We use molecular dynamics to predict the ionic conductivities of lithiated Nafion perfluorinated ionomeric membranes swelled in dimethyl sulfoxide (DMSO) and acetonitrile (ACN). The experimental conductivity of lithiated Nafion swollen with DMSO is two orders of magnitude higher than with ACN. Conversely, the mobility of Li[superscript +] ions in a solution of LiPF[subscript 6] in ACN is approximately six times higher than in DMSO. In this work, we demonstrate that the ionic conductivity of Nafion is substantially governed by the concentration of free Li[superscript +] ions, i.e. by the degree of dissociation of the Li[superscript +] and SO[subscript 3][superscript −] pairs, and that the inherent mobility of Li[superscript +] in different solvents is of secondary importance

    Oxylipin Profiles in Plasma of Patients with Wilson’s Disease

    No full text
    Wilson’s disease (WD) is a rare autosomal recessive metabolic disorder resulting from mutations in the copper-transporting, P-type ATPase gene ATP7B gene, but influences of epigenetics, environment, age, and sex-related factors on the WD phenotype complicate diagnosis and clinical manifestations. Oxylipins, derivatives of omega-3, and omega-6 polyunsaturated fatty acids (PUFAs) are signaling mediators that are deeply involved in innate immunity responses; the regulation of inflammatory responses, including acute and chronic inflammation; and other disturbances related to any system diseases. Therefore, oxylipin profile tests are attractive for the diagnosis of WD. With UPLC-MS/MS lipidomics analysis, we detected 43 oxylipins in the plasma profiles of 39 patients with various clinical manifestations of WD compared with 16 healthy controls (HCs). Analyzing the similarity matrix of oxylipin profiles allowed us to cluster patients into three groups. Analysis of the data by VolcanoPlot and partial least square discriminant analysis (PLS-DA) showed that eight oxylipins and lipids stand for the variance between WD and HCs: eicosapentaenoic acid EPA, oleoylethanolamide OEA, octadecadienoic acids 9-HODE, 9-KODE, 12-hydroxyheptadecatrenoic acid 12-HHT, prostaglandins PGD2, PGE2, and 14,15-dihydroxyeicosatrienoic acids 14,15-DHET. The compounds indicate the involvement of oxidative stress damage, inflammatory processes, and peroxisome proliferator-activated receptor (PPAR) signaling pathways in this disease. The data reveal novel possible therapeutic targets and intervention strategies for treating WD

    Modulation of the Primary Astrocyte-Enriched Cultures’ Oxylipin Profiles Reduces Neurotoxicity

    No full text
    Recently, manipulations with reactive astrocytes have been viewed as a new therapeutic approach that will enable the development of treatments for acute brain injuries and neurodegenerative diseases. Astrocytes can release several substances, which may exert neurotoxic or neuroprotective effects, but the nature of these substances is still largely unknown. In the present work, we tested the hypothesis that these effects may be attributed to oxylipins, which are synthesized from n-3 or n-6 polyunsaturated fatty acids (PUFAs). We used astrocyte-enriched cultures and found that: (1) lipid fractions secreted by lipopolysaccharide (LPS)—stimulated rat primary astrocyte-enriched cultures—possessed neurotoxic activity in rat primary neuronal cultures; (2) both of the tested oxylipin synthesis inhibitors, ML355 and Zileuton, reduce the LPS-stimulated release of interleukin 6 (IL-6) by astrocyte cultures, but only ML355 can change lipid fractions from neurotoxic to non-toxic; and (3) oxylipin profiles, measured by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) from neurotoxic and non-toxic lipid fractions, reveal a group of n-3 docosahexaenoic acid derivatives, hydroxydocosahexaenoic acids (HdoHEs)-4-HdoHE, 8-HdoHE, and 17-HdoHE, which may reflect the neuroprotective features of lipid fractions. Regulating the composition of astrocyte oxylipin profiles may be suggested as an approach for regulation of neurotoxicity in inflammatory processes
    corecore