14 research outputs found

    A framework for assessing the feasibility of malaria elimination

    Get PDF
    The recent scale-up of malaria interventions, the ensuing reductions in the malaria burden, and reinvigorated discussions about global eradication have led many countries to consider malaria elimination as an alternative to maintaining control measures indefinitely. Evidence-based guidance to help countries weigh their options is thus urgently needed. A quantitative feasibility assessment that balances the epidemiological situation in a region, the strength of the public health system, the resource constraints, and the status of malaria control in neighboring areas can serve as the basis for robust, long-term strategic planning. Such a malaria elimination feasibility assessment was recently prepared for the Minister of Health in Zanzibar. Based on the Zanzibar experience, a framework is proposed along three axes that assess the technical requirements to achieve and maintain elimination, the operational capacity of the malaria programme and the public health system to meet those requirements, and the feasibility of funding the necessary programmes over time. Key quantitative and qualitative metrics related to each component of the assessment are described here along with the process of collecting data and interpreting the results. Although further field testing, validation, and methodological improvements will be required to ensure applicability in different epidemiological settings, the result is a flexible, rational methodology for weighing different strategic options that can be applied in a variety of contexts to establish data-driven strategic plans

    Spatial data integration for mapping progress towards the Sustainable Development Goals

    No full text
    Abstract: The UN sustainable development goals, an intergovernmental set of 17 aspirational goals and 169 targets to be achieved by 2030, were launched last year. These include ending poverty and malnutrition, improving health and education, and building resilience to natural disasters and climate change. A particular focus across the goals and targets is achievement 'everywhere', ensuring that no one gets left behind and that progress is monitored at subnational levels to avoid national-level statistics masking local heterogeneities. How will this subnational monitoring of progress towards meeting the goals be undertaken when many countries will undertake just a single census in the 2015-2030 monitoring period? Professor Tatem will present an overview of the work of the two organizations he directs; WorldPop ( www.worldpop.org ) and Flowminder ( www.flowminder.org ); in meeting the challenges of constructing consistent, comparable and regularly updated metrics to measure a! nd map progress towards the sustainable development goals in low and middle income countries, and where the integration of traditional and new forms of data, including those derived from satellite imagery, GPS and mobile phones, can play a role

    Charting the spread of sickness

    No full text

    Leveraging geospatial technologies and data to strengthen immunisation programmes: Rapid guidance for investment planning

    No full text
    This guidance document provides information, steps and important considerations for the process of selecting, planning and budgeting geospatial data and technology applications for immunisation. It serves as a complement to the information provided in the 2018 UNICEF Guidance [1] and the 2020 Landscape Analysis [2]. The steps out- lined below help guide immunisation programme man- agers to integrate geospatial data and technologies into immunisation programming and to request the resources they need based on immunisation programme needs and the current enabling environment

    Distinct rates and patterns of spread of the major HIV-1 subtypes in Central and East Africa

    No full text
    Since the ignition of the HIV-1 group M pandemic in the beginning of the 20th century, group M lineages have spread heterogeneously throughout the world. Subtype C spread rapidly through sub-Saharan Africa and is currently the dominant HIV lineage worldwide. Yet the epidemiological and evolutionary circumstances that contributed to its epidemiological expansion remain poorly understood. Here, we analyse 346 novel pol sequences from the DRC to compare the evolutionary dynamics of the main HIV-1 lineages, subtypes A1, C and D. Our results place the origins of subtype C in the 1950s in Mbuji-Mayi, the mining city of southern DRC, while subtypes A1 and D emerged in the capital city of Kinshasa, and subtypes H and J in the less accessible port city of Matadi. Following a 15-year period of local transmission in southern DRC, we find that subtype C spread at least three-fold faster than other subtypes circulating in Central and East Africa. In conclusion, our results shed light on the origins of HIV-1 main lineages and suggest that socio-historical rather than evolutionary factors may have determined the epidemiological fate of subtype C in sub-Saharan Africa.status: publishe
    corecore