110 research outputs found

    Comparative Angiogenic Activities of Induced Pluripotent Stem Cells Derived from Young and Old Mice

    Get PDF
    Advanced age is associated with decreased stem cell activity. However, the effect of aging on the differentiation capacity of induced pluripotent stem (iPS) cells into cardiovascular cells has not been fully clarified. We investigated whether iPS cells derived from young and old mice are equally capable of differentiating into vascular progenitor cells, and whether these cells regulate vascular responses in vivo. iPS cells from mouse embryonic fibroblasts (young) or 21 month-old mouse bone marrow (old) were used. Fetal liver kinase-1 positive (Flk-1+) cells, as a vascular progenitor marker, were induced after 3 to 4 days of culture from iPS cells derived from young and old mice. These Flk-1+ cells were sorted and shown to differentiate into VE-cadherin+ endothelial cells and α-SMA+ smooth muscle cells. Tube-like formation was also successfully induced in both young and old murine Flk-1+ cells. Next, hindlimb ischemia was surgically induced, and purified Flk-1+ cells were directly injected into ischemic hindlimbs of nude mice. Revascularization of the ischemic hindlimb was significantly accelerated in mice transplanted with Flk-1+ cells derived from iPS cells from either young or old mice, as compared to control mice as evaluated by laser Doppler blood flowmetry. The degree of revascularization was similar in the two groups of ischemic mice injected with iPS cell-derived Flk-1+ cells from young or old mice. Transplantation of Flk-1+ cells from both young and old murine iPS cells also increased the expression of VEGF, HGF and IGF mRNA in ischemic tissue as compared to controls. iPS cell-derived Flk-1+ cells differentiated into vascular progenitor cells, and regulated angiogenic vascular responses both in vitro and in vivo. These properties of iPS cells derived from old mice are essentially the same as those of iPS cells from young mice, suggesting the functionality of generated iPS cells themselves to be unaffected by aging

    Always Contact a Vascular Interventional Specialist Before Amputating a Patient with Critical Limb Ischemia

    Get PDF
    Patients with severe critical limb ischemia (CLI) due to long tibial artery occlusions are often poor candidates for surgical revascularization and frequently end up with a lower limb amputation. Subintimal angioplasty (SA) offers a minimally invasive alternative for limb salvage in this severely compromised patient population. The objective of this study was to evaluate the results of SA in patients with CLI caused by long tibial occlusions who have no surgical options for revascularization and are facing amputation. We retrospectively reviewed all consecutive patients with CLI due to long tibial occlusions who were scheduled for amputation because they had no surgical options for revascularization and who were treated by SA. A total of 26 procedures in 25 patients (14 males; mean age, 70 ± 15 [SD] years) were evaluated. Technical success rate was 88% (23/26). There were four complications, which were treated conservatively. Finally, in 10 of 26 limbs, no amputation was needed. A major amputation was needed in 10 limbs (7 below-knee amputations and 3 above-knee amputations). Half of the major amputations took place within 3 months after the procedure. Cumulative freedom of major amputation after 12 months was 59% (SE = 11%). In six limbs, amputation was limited to a minor amputation. Seven patients (28%) died during follow-up. In conclusion, SA of the tibial arteries seem to be a valuable treatment option to prevent major amputation in patients with CLI who are facing amputation due to lack of surgical options

    CD34+/M-cadherin+ Bone Marrow Progenitor Cells Promote Arteriogenesis in Ischemic Hindlimbs of ApoE−/− Mice

    Get PDF
    BACKGROUND: Cell-based therapy shows promise in treating peripheral arterial disease (PAD); however, the optimal cell type and long-term efficacy are unknown. In this study, we identified a novel subpopulation of adult progenitor cells positive for CD34 and M-cadherin (CD34⁺/M-cad⁺ BMCs) in mouse and human bone marrow. We also examined the long-lasting therapeutic efficacy of mouse CD34⁺/M-cad⁺ BMCs in restoring blood flow and promoting vascularization in an atherosclerotic mouse model of PAD. METHODS AND FINDINGS: Colony-forming cell assays and flow cytometry analysis showed that CD34⁺/M-cad⁺ BMCs have hematopoietic progenitor properties. When delivered intra-arterially into the ischemic hindlimbs of ApoE⁻/⁻ mice, CD34⁺/M-cad⁺ BMCs alleviated ischemia and significantly improved blood flow compared with CD34⁺/M-cad⁻ BMCs, CD34⁻/M-cad⁺ BMCs, or unselected BMCs. Significantly more arterioles were seen in CD34⁺/M-cad⁺ cell-treated limbs than in any other treatment group 60 days after cell therapy. Furthermore, histologic assessment and morphometric analyses of hindlimbs treated with GFP⁺ CD34⁺/M-cad⁺ cells showed that injected cells incorporated into solid tissue structures at 21 days. Confocal microscopic examination of GFP⁺ CD34⁺/M-cad⁺ cell-treated ischemic legs followed by immunostaining indicated the vascular differentiation of CD34⁺/M-cad⁺ progenitor cells. A cytokine antibody array revealed that CD34⁺/M-cad⁺ cell-conditioned medium contained higher levels of cytokines in a unique pattern, including bFGF, CRG-2, EGF, Flt-3 ligand, IGF-1, SDF-1, and VEGFR-3, than did CD34⁺/M-cad⁻ cell-conditioned medium. The proangiogenic cytokines secreted by CD34⁺/M-cad⁺ cells induced oxygen- and nutrient-depleted endothelial cell sprouting significantly better than CD34⁺/M-cad⁻ cells during hypoxia. CONCLUSION: CD34⁺/M-cad⁺ BMCs represent a new progenitor cell type that effectively alleviates hindlimb ischemia in ApoE⁻/⁻ mice by consistently improving blood flow and promoting arteriogenesis. Additionally, CD34⁺/M-cad⁺ BMCs contribute to microvascular remodeling by differentiating into vascular cells and releasing proangiogenic cytokines and growth factors

    Exhaustive expansion: A novel technique for analyzing complex data generated by higher-order polychromatic flow cytometry experiments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The complex data sets generated by higher-order polychromatic flow cytometry experiments are a challenge to analyze. Here we describe Exhaustive Expansion, a data analysis approach for deriving hundreds to thousands of cell phenotypes from raw data, and for interrogating these phenotypes to identify populations of biological interest given the experimental context.</p> <p>Methods</p> <p>We apply this approach to two studies, illustrating its broad applicability. The first examines the longitudinal changes in circulating human memory T cell populations within individual patients in response to a melanoma peptide (gp100<sub>209-2M</sub>) cancer vaccine, using 5 monoclonal antibodies (mAbs) to delineate subpopulations of viable, gp100-specific, CD8+ T cells. The second study measures the mobilization of stem cells in porcine bone marrow that may be associated with wound healing, and uses 5 different staining panels consisting of 8 mAbs each.</p> <p>Results</p> <p>In the first study, our analysis suggests that the cell surface markers CD45RA, CD27 and CD28, commonly used in historical lower order (2-4 color) flow cytometry analysis to distinguish memory from naïve and effector T cells, may not be obligate parameters in defining central memory T cells (T<sub>CM</sub>). In the second study, we identify novel phenotypes such as CD29+CD31+CD56+CXCR4+CD90+Sca1-CD44+, which may characterize progenitor cells that are significantly increased in wounded animals as compared to controls.</p> <p>Conclusions</p> <p>Taken together, these results demonstrate that Exhaustive Expansion supports thorough interrogation of complex higher-order flow cytometry data sets and aids in the identification of potentially clinically relevant findings.</p

    Pericardial Patch Angioplasty Heals via an Ephrin-B2 and CD34 Positive Cell Mediated Mechanism

    Get PDF
    Pericardial patches are commonly used in vascular surgery to close arteriotomies. The mechanism of early healing after patch implantation is still not well defined. We used a rat aortic patch model to assess pericardial patch healing and examined Ephrin-B2, a marker of arterial identity, expression within the post-implantation patch. We also determined whether endothelial progenitor cells (EPC) are associated with early patch healing in the arterial environment.Wistar rats (200-250 grams) underwent infrarenal aortic arteriotomy and then closure via bovine or porcine pericardial patch angioplasty. Control groups included subcutaneously implanted patches. Patches were harvested at 0-30 days and analyzed by histology, immunohistochemistry, immunofluorescence and Western blot as well as quantitative PCR.Prior to implantation, pericardial patches are largely composed of collagen and are acellular. Following arterial implantation, increasing numbers of CD68-positive cells as well as Ephrin-B2 and CD34 dual-positive cells are found within both bovine and porcine pericardial patches, whereas the infiltrating cells are negative for vWF and α-actin. Porcine patches have a luminal monolayer of cells at day 7, compared to bovine patches that have fewer luminal cells. Subcutaneously implanted patches do not attract Ephrin-B2/CD34-positive cells. By day 30, both bovine and porcine pericardial patches develop a neointima that contains Ephrin-B2, CD34, and VEGFR2-positive cells.Both CD68-positive and Ephrin-B2 and CD34 dual-positive cells infiltrate the pericardial patch early after implantation. Arteriotomy closure via pericardial patch angioplasty shows patch adaptation to the arterial environment that may involve a foreign body response as well as localization of EPC. Arterial remodeling of pericardial patches support endothelialization and may represent a paradigm of healing of scaffolds used for tissue engineering

    Endothelial Progenitor Cells Predict Cardiovascular Events after Atherothrombotic Stroke and Acute Myocardial Infarction. A PROCELL Substudy.

    Get PDF
    Introduction: The aim of this study was to determine prognostic factors for the risk of new vascular events during the first 6 months after acute myocardial infarction (AMI) or atherothrombotic stroke (AS). We were interested in the prognostic role of endothelial progenitor cells (EPC) and circulating endothelial cells (CEC). Methods: Between February 2009 and July 2012, 100 AMI and 50 AS patients were consecutively studied in three Spanish centres. Patients with previously documented coronary artery disease or ischemic strokes were excluded. Samples were collected within 24h of onset of symptoms. EPC and CEC were studied using flow cytometry and categorized by quartiles. Patients were followed for up to 6 months. NVE was defined as new acute coronary syndrome, transient ischemic attack (TIA), stroke, or any hospitalization or death from cardiovascular causes. The variables included in the analysis included: vascular risk factors, carotid intima-media thickness (IMT), atherosclerotic burden and basal EPC and CEC count. Multivariate survival analysis was performed using Cox regression analysis. Results: During follow-up, 19 patients (12.66%) had a new vascular event (5 strokes; 3 TIAs; 4 AMI; 6 hospitalizations; 1 death). Vascular events were associated with age (P = 0.039), carotid IMT≥0.9 (P = 0.044), and EPC count (P = 0.041) in the univariate analysis. Multivariate Cox regression analysis showed an independent association with EPC in the lowest quartile (HR: 10.33, 95%CI (1.22-87.34), P = 0.032] and IMT≥0.9 [HR: 4.12, 95%CI (1.21-13.95), P = 0.023]. Conclusions: Basal EPC and IMT≥0.9 can predict future vascular events in patients with AMI and AS, but CEC count does not affect cardiovascular risk

    In Vivo Tracking of Transplanted Mononuclear Cells Using Manganese-Enhanced Magnetic Resonance Imaging (MEMRI)

    Get PDF
    BACKGROUND: Transplantation of mononuclear cells (MNCs) has previously been tested as a method to induce therapeutic angiogenesis to treat limb ischemia in clinical trials. Non-invasive high resolution imaging is required to track the cells and evaluate clinical relevance after cell transplantation. The hypothesis that MRI can provide in vivo detection and long-term observation of MNCs labeled with manganese contrast-agent was investigated in ischemic rat legs. METHODS AND FINDINGS: The Mn-labeled MNCs were evaluated using 7-tesla high-field magnetic resonance imaging (MRI). Intramuscular transplanted Mn-labeled MNCs were visualized with MRI for at least 7 and up to 21 days after transplantation in the ischemic leg. The distribution of Mn-labeled MNCs was similar to that of ¹¹¹In-labeled MNCs measured with single-photon emission computed tomography (SPECT) and DiI-dyed MNCs with fluorescence microscopy. In addition, at 1-2 days after transplantation the volume of the site injected with intact Mn-labeled MNCs was significantly larger than that injected with dead MNCs, although the dead Mn-labeled MNCs were also found for approximately 2 weeks in the ischemic legs. The area covered by CD31-positive cells (as a marker of capillary endothelial cells) in the intact Mn-MNCs implanted site at 43 days was significantly larger than that at a site implanted with dead Mn-MNCs. CONCLUSIONS: The present Mn-enhanced MRI method enabled visualization of the transplanted area with a 150-175 µm in-plane spatial resolution and allowed the migration of labeled-MNCs to be observed for long periods in the same subject. After further optimization, MRI-based Mn-enhanced cell-tracking could be a useful technique for evaluation of cell therapy both in research and clinical applications

    Critical Limb Ischemia

    Get PDF
    Critical limb ischemia (CLI), defined as chronic ischemic rest pain, ulcers, or gangrene attributable to objectively proven arterial occlusive disease, is the most advanced form of peripheral arterial disease. Traditionally, open surgical bypass was the only effective treatment strategy for limb revascularization in this patient population. However, during the past decade, the introduction and evolution of endovascular procedures have significantly increased treatment options. In a certain subset of patients for whom either surgical or endovascular revascularization may not be appropriate, primary amputation remains a third treatment option. Definitive high-level evidence on which to base treatment decisions, with an emphasis on clinical and cost effectiveness, is still lacking. Treatment decisions in CLI are individualized, based on life expectancy, functional status, anatomy of the arterial occlusive disease, and surgical risk. For patients with aortoiliac disease, endovascular therapy has become first-line therapy for all but the most severe patterns of occlusion, and aortofemoral bypass surgery is a highly effective and durable treatment for the latter group. For infrainguinal disease, the available data suggest that surgical bypass with vein is the preferred therapy for CLI patients likely to survive 2 years or more, and for those with long segment occlusions or severe infrapopliteal disease who have an acceptable surgical risk. Endovascular therapy may be preferred in patients with reduced life expectancy, those who lack usable vein for bypass or who are at elevated risk for operation, and those with less severe arterial occlusions. Patients with unreconstructable disease, extensive necrosis involving weight-bearing areas, nonambulatory status, or other severe comorbidities may be considered for primary amputation or palliative measures
    corecore