651 research outputs found

    Ethnomedicine in healthcare systems of the world: a Semester at Sea pilot survey in 11 countries

    Get PDF
    An understanding and appreciation for the varied healthcare systems in use throughout the world are increasingly vital for medical personnel as patient populations are now composed of ethnically diverse people with wide-ranging belief systems. While not a statistically valid survey, this pilot study gives a global overview of healthcare differences around the world. A pilot study of 459 individuals from 11 different countries around the world was administered by 33 students in the upper division course, People, Pathology, and World Medicine from Semester at Sea, Fall 2007, to ascertain trends in healthcare therapies. Open-ended surveys were conducted in English, through an interpreter, or in the native language. Western hospital use ranked highly for all countries, while ethnomedical therapies were utilized to a lesser degree. Among the findings, mainland China exhibited the greatest overall percentage of ethnomedical therapies, while the island of Hong Kong, the largest use of Western hospitals. The figures and trends from the surveys suggest the importance of understanding diverse cultural healthcare beliefs when treating individuals of different ethnic backgrounds. The study also revealed the increasingly complex and multisystem-based medical treatments being used internationally

    Inhibition of protein N-myristoylation blocks Plasmodium falciparum intraerythrocytic development, egress and invasion

    Get PDF
    We have combined chemical biology and genetic modification approaches to investigate the importance of protein myristoylation in the human malaria parasite, Plasmodium falciparum. Parasite treatment during schizogony in the last 10 to 15 hours of the erythrocytic cycle with IMP-1002, an inhibitor of N-myristoyl transferase (NMT), led to a significant blockade in parasite egress from the infected erythrocyte. Two rhoptry proteins were mislocalized in the cell, suggesting that rhoptry function is disrupted. We identified 16 NMT substrates for which myristoylation was significantly reduced by NMT inhibitor (NMTi) treatment, and, of these, 6 proteins were substantially reduced in abundance. In a viability screen, we showed that for 4 of these proteins replacement of the N-terminal glycine with alanine to prevent myristoylation had a substantial effect on parasite fitness. In detailed studies of one NMT substrate, glideosome-associated protein 45 (GAP45), loss of myristoylation had no impact on protein location or glideosome assembly, in contrast to the disruption caused by GAP45 gene deletion, but GAP45 myristoylation was essential for erythrocyte invasion. Therefore, there are at least 3 mechanisms by which inhibition of NMT can disrupt parasite development and growth: early in parasite development, leading to the inhibition of schizogony and formation of "pseudoschizonts," which has been described previously; at the end of schizogony, with disruption of rhoptry formation, merozoite development and egress from the infected erythrocyte; and at invasion, when impairment of motor complex function prevents invasion of new erythrocytes. These results underline the importance of P. falciparum NMT as a drug target because of the pleiotropic effect of its inhibition

    Suppressor of cytokine signaling (SOCS)5 ameliorates influenza infection via inhibition of EGFR signaling

    Get PDF
    © Kedzierski et al. Influenza virus infections have a significant impact on global human health. Individuals with suppressed immunity, or suffering from chronic inflammatory conditions such as COPD, are particularly susceptible to influenza. Here we show that suppressor of cytokine signaling (SOCS) five has a pivotal role in restricting influenza A virus in the airway epithelium, through the regulation of epidermal growth factor receptor (EGFR). Socs5-deficient mice exhibit heightened disease severity, with increased viral titres and weight loss. Socs5 levels were differentially regulated in response to distinct influenza viruses (H1N1, H3N2, H5N1 and H11N9) and were reduced in primary epithelial cells from COPD patients, again correlating with increased susceptibility to influenza. Importantly, restoration of SOCS5 levels restricted influenza virus infection, suggesting that manipulating SOCS5 expression and/or SOCS5 targets might be a novel therapeutic approach to influenza

    Mapping differential interactomes by affinity purification coupled with data independent mass spectrometry acquisition

    Get PDF
    Characterizing changes in protein-protein interactions associated with sequence variants (e.g. disease-associated mutations or splice forms) or following exposure to drugs, growth factors or hormones is critical to understanding how protein complexes are built, localized and regulated. Affinity purification (AP) coupled with mass spectrometry permits the analysis of protein interactions under near-physiological conditions, yet monitoring interaction changes requires the development of a robust and sensitive quantitative approach, especially for large-scale studies where cost and time are major considerations. To this end, we have coupled AP to data-independent mass spectrometric acquisition (SWATH), and implemented an automated data extraction and statistical analysis pipeline to score modulated interactions. Here, we use AP-SWATH to characterize changes in protein-protein interactions imparted by the HSP90 inhibitor NVP-AUY922 or melanoma-associated mutations in the human kinase CDK4. We show that AP-SWATH is a robust label-free approach to characterize such changes, and propose a scalable pipeline for systems biology studies

    Western Indian Ocean marine and terrestrial records of climate variability: a review and new concepts on land-ocean interactions since AD 1660

    Get PDF
    We examine the relationship between three tropical and two subtropical western Indian Ocean coral oxygen isotope time series to surface air temperatures (SAT) and rainfall over India, tropical East Africa and southeast Africa. We review established relationships, provide new concepts with regard to distinct rainfall seasons, and mean annual temperatures. Tropical corals are coherent with SAT over western India and East Africa at interannual and multidecadal periodicities. The subtropical corals correlate with Southeast African SAT at periodicities of 16–30 years. The relationship between the coral records and land rainfall is more complex. Running correlations suggest varying strength of interannual teleconnections between the tropical coral oxygen isotope records and rainfall over equatorial East Africa. The relationship with rainfall over India changed in the 1970s. The subtropical oxygen isotope records are coherent with South African rainfall at interdecadal periodicities. Paleoclimatological reconstructions of land rainfall and SAT reveal that the inferred relationships generally hold during the last 350 years. Thus, the Indian Ocean corals prove invaluable for investigating land–ocean interactions during past centuries

    Emergence of double- and triple-gene reassortant G1P[8] rotaviruses possessing a DS-1-like backbone after rotavirus vaccine introduction in Malawi

    Get PDF
    To combat the high burden of rotavirus gastroenteritis, multiple African countries have introduced rotavirus vaccines into their childhood immunization programs. Malawi incorporated a G1P[8] rotavirus vaccine (Rotarix) into its immunization schedule in 2012. Utilizing a surveillance platform of hospitalized rotavirus gastroenteritis cases, we examined the phylodynamics of G1P[8] rotavirus strains that circulated in Malawi before (1998 to 2012) and after (2013 to 2014) vaccine introduction. Analysis of whole genomes obtained through next-generation sequencing revealed that all randomly selected prevaccine G1P[8] strains sequenced (n = 32) possessed a Wa-like genetic constellation, whereas postvaccine G1P[8] strains (n = 18) had a DS-1-like constellation. Phylodynamic analyses indicated that postvaccine G1P[8] strains emerged through reassortment events between human Wa- and DS-1-like rotaviruses that circulated in Malawi from the 1990s and hence were classified as atypical DS-1-like reassortants. The time to the most recent common ancestor for G1P[8] strains was from 1981 to 1994; their evolutionary rates ranged from 9.7 × 10−4 to 4.1 × 10−3 nucleotide substitutions/site/year. Three distinct G1P[8] lineages chronologically replaced each other between 1998 and 2014. Genetic drift was the likely driver for lineage turnover in 2005, whereas replacement in 2013 was due to reassortment. Amino acid substitution within the outer glycoprotein VP7 of G1P[8] strains had no impact on the structural conformation of the antigenic regions, suggesting that it is unlikely that they would affect recognition by vaccine-induced neutralizing antibodies. While the emergence of DS-1-like G1P[8] rotavirus reassortants in Malawi was therefore likely due to natural genotype variation, vaccine effectiveness against such strains needs careful evaluation. IMPORTANCE: The error-prone RNA-dependent RNA polymerase and the segmented RNA genome predispose rotaviruses to genetic mutation and genome reassortment, respectively. These evolutionary mechanisms generate novel strains and have the potential to lead to the emergence of vaccine escape mutants. While multiple African countries have introduced a rotavirus vaccine, there are few data describing the evolution of rotaviruses that circulated before and after vaccine introduction. We report the emergence of atypical DS-1-like G1P[8] strains during the postvaccine era in Malawi. Three distinct G1P[8] lineages circulated chronologically from 1998 to 2014; mutation and reassortment drove lineage turnover in 2005 and 2013, respectively. Amino acid substitutions within the outer capsid VP7 glycoprotein did not affect the structural conformation of mapped antigenic sites, suggesting a limited effect on the recognition of G1-specific vaccine-derived antibodies. The genes that constitute the remaining genetic backbone may play important roles in immune evasion, and vaccine effectiveness against such atypical strains needs careful evaluation

    Comparative Lipidomics of Azole Sensitive and Resistant Clinical Isolates of Candida albicans Reveals Unexpected Diversity in Molecular Lipid Imprints

    Get PDF
    Although transcriptome and proteome approaches have been applied to determine the regulatory circuitry behind multidrug resistance (MDR) in Candida, its lipidome remains poorly characterized. Lipids do acclimatize to the development of MDR in Candida, but exactly how the acclimatization is achieved is poorly understood. In the present study, we have used a high-throughput mass spectrometry-based shotgun approach and analyzed the lipidome of genetically matched clinical azole-sensitive (AS) and -resistant (AR) isolates of C. albicans. By comparing the lipid profiling of matched isolates, we have identified major classes of lipids and determined more than 200 individual molecular lipid species among these major classes. The lipidome analysis has been statistically validated by principal component analysis. Although each AR isolate was similar with regard to displaying a high MIC to drugs, they had a distinct lipid imprint. There were some significant commonalities in the lipid profiles of these pairs, including molecular lipid species ranging from monounsaturated to polyunsaturated fatty acid-containing phosphoglycerides. Consistent fluctuation in phosphatidyl serine, mannosylinositolphosphorylceramides, and sterol esters levels indicated their compensatory role in maintaining lipid homeostasis among most AR isolates. Notably, overexpression of either CaCdr1p or CaMdr1p efflux pump proteins led to a different lipidomic response among AR isolates. This study clearly establishes the versatility of lipid metabolism in handling azole stress among various matched AR isolates. This comprehensive lipidomic approach will serve as a resource for assessing strategies aimed at disrupting the functions of Candida lipids, particularly the functional interactions between lipids and MDR determinants
    corecore