125 research outputs found

    Soluble Host Defense Lectins in Innate Immunity to Influenza Virus

    Get PDF
    Host defenses against viral infections depend on a complex interplay of innate (nonspecific) and adaptive (specific) components. In the early stages of infection, innate mechanisms represent the main line of host defense, acting to limit the spread of virus in host tissues prior to the induction of the adaptive immune response. Serum and lung fluids contain a range of lectins capable of recognizing and destroying influenza A viruses (IAV). Herein, we review the mechanisms by which soluble endogenous lectins mediate anti-IAV activity, including their role in modulating IAV-induced inflammation and disease and their potential as prophylactic and/or therapeutic treatments during severe IAV-induced disease

    Increased antigen specific T cell numbers in the absence of altered migration or division rates as a result of mucosal cholera toxin administration

    No full text
    Cholera toxin (CT) is a mucosal adjuvant capable of inducing strong immune responses to co-administered antigens following oral or intranasal immunization of mice. To date, the direct effect of CT on antigen-specific CD4(+) T cell migration and proliferation profiles in vivo is not well characterized. In this study, the effect of CT on the migration pattern and proliferative responses of adoptively transferred, CD4(+) TCR transgenic T cells in orally or intranasally vaccinated mice, was analyzed by flow cytometry. GFP-expressing or CFSE-labeled OT-II lymphocytes were adoptively transferred to naïve C57BL/6 mice, and mice were subsequently vaccinated with OVA with or without CT via the oral or intranasal route. CT did not alter the migration pattern of antigen-specific T cells, regardless of the route of immunization, but increased the number of transgenic CD4(+) T cells in draining lymphoid tissue. This increase in the number of transgenic CD4(+) T cells was not due to cells undergoing more rounds of cellular division in vivo, suggesting that CT may exert an indirect adjuvant effect on CD4(+) T cells. The findings reported here suggest that CT functions as a mucosal adjuvant by increasing the number of antigen specific CD4(+) T cells independent of their migration pattern or kinetics of cellular division.Grant support was received from the National Health and Medical Research Council of Australia (NHMRC). OLW is a recipient of an R.D. Wright Career Development Award

    Loss of a single N-linked glycan from the hemagglutinin of influenza virus is associated with resistance to collectins and increased virulence in mice

    Get PDF
    BACKGROUND: Glycosylation on the globular head of the hemagglutinin (HA) protein of influenza virus acts as an important target for recognition and destruction of virus by innate immune proteins of the collectin family. This, in turn, modulates the virulence of different viruses for mice. The role of particular oligosaccharide attachments on the HA in determining sensitivity to collectins has yet to be fully elucidated. METHODS: When comparing the virulence of H3N2 subtype viruses for mice we found that viruses isolated after 1980 were highly glycosylated and induced mild disease in mice. During these studies, we were surprised to find a small plaque variant of strain A/Beijing/353/89 (Beij/89) emerged following infection of mice and grew to high titres in mouse lung. In the current study we have characterized the properties of this small plaque mutant both in vitro and in vivo. RESULTS: Small plaque mutants were recovered following plaquing of lung homogenates from mice infected with influenza virus seed Beij/89. Compared to wild-type virus, small plaque mutants showed increased virulence in mice yet did not differ in their ability to infect or replicate in airway epithelial cells in vitro. Instead, small plaque variants were markedly resistant to neutralization by murine collectins, a property that correlated with the acquisition of an amino acid substitution at residue 246 on the viral HA. We present evidence that this substitution was associated with the loss of an oligosaccharide glycan from the globular head of HA. CONCLUSION: A point mutation in the gene encoding the HA of Beij/89 was shown to ablate a glycan attachment site. This was associated with resistance to collectins and increased virulence in mice

    Pandemic H1N1 Influenza A Viruses Are Resistant to the Antiviral Activities of Innate Immune Proteins of the Collectin and Pentraxin Superfamilies

    Get PDF
    Abstract Acquired immune responses elicited to recent strains of seasonal H1N1 influenza viruses provide limited protection against emerging A(H1N1) pandemic viruses. Accordingly, pre-existing or rapidly induced innate immune defenses are of critical importance in limiting early infection. Respiratory secretions contain proteins of the innate immune system, including members of the collectin and pentraxin superfamilies. These mediate potent antiviral activity and act as an initial barrier to influenza infection. In this study, we have examined the sensitivity of H1N1 viruses, including pandemic virus strains, for their sensitivity to collectins (surfactant protein [SP]-D and mannose-binding lectin [MBL]) and to the pentraxin PTX3. Human SP-D and MBL inhibited virus-induced hemagglutinating activity, blocked the enzymatic activity of the viral neuraminidase, and neutralized the ability of H1N1 viruses to infect human respiratory epithelial cells in a manner that correlated with the degree of glycosylation in the globular head of the hemagglutinin. Recent seasonal H1N1 viruses expressed three to four N-glycosylation sequons on the head of hemagglutinin and were very sensitive to inhibition by SP-D or MBL, whereas A(H1N1) pandemic viruses expressed a single N-glycosylation sequon and were resistant to either collectin. Of interest, both seasonal and pandemic H1N1 viruses were resistant to PTX3. Thus, unlike recent seasonal H1N1 strains of influenza virus, A(H1N1) pandemic viruses are resistant to the antiviral activities of innate immune proteins of the collectin superfamily

    The Role of Neutrophils during Mild and Severe Influenza Virus Infections of Mice

    Get PDF
    Neutrophils have been implicated in both protective and pathological responses following influenza virus infections. We have used mAb 1A8 (anti-Ly6G) to specifically deplete LyG6high neutrophils and induce neutropenia in mice infected with virus strains known to differ in virulence. Mice were also treated with mAb RB6-8C5 (anti-Ly6C/G or anti-Gr-1), a mAb widely used to investigate the role of neutrophils in mice that has been shown to bind and deplete additional leukocyte subsets. Using mAb 1A8, we confirm the beneficial role of neutrophils in mice infected with virus strains of intermediate (HKx31; H3N2) or high (PR8; H1N1) virulence whereas treatment of mice infected with an avirulent strain (BJx109; H3N2) did not affect disease or virus replication. Treatment of BJx109-infected mice with mAb RB6-8C5 was, however, associated with significant weight loss and enhanced virus replication indicating that other Gr-1+ cells, not neutrophils, limit disease severity during mild influenza infections

    Microorganisms detected in intussusception cases and controls in children <3 years in South Africa from 2013 to 2017

    Get PDF
    A matched case-control evaluated infectious etiologies in children <3 years in post-rotavirus vaccine intussusception surveillance. Adenovirus and adenovirus types C, A, and B were detected more frequently in cases versus controls at statistically significant values. Wild-type rotavirus, rotavirus vaccine strains, and human herpesvirus were not associated with intussusception.The Bill & Melinda Gates Foundation and an Emerging Global Leader Award from the Fogarty International Center of the NIH.https://academic.oup.com/ofidhj2024Medical VirologyNon

    Sequence-dependent off-target inhibition of TLR7/8 sensing by synthetic microRNA inhibitors

    Get PDF
    Anti-microRNA (miRNA) oligonucleotides (AMOs) with 2\u27-O-Methyl (2\u27OMe) residues are commonly used to study miRNA function and can achieve high potency, with low cytotoxicity. Not withstanding this, we demonstrate the sequence-dependent capacity of 2\u27OMe AMOs to inhibit Toll-like receptor (TLR) 7 and 8 sensing of immunostimulatory RNA, independent of their miRNA-targeting function. Through a screen of 29 AMOs targeting common miRNAs, we found a subset of sequences highly inhibitory to TLR7 sensing in mouse macrophages. Interspecies conservation of this inhibitory activity was confirmed on TLR7/8 activity in human peripheral blood mononuclear cells. Significantly, we identified a core motif governing the inhibitory activity of these AMOs, which is present in more than 50 AMOs targeted to human miRNAs in miRBaseV20. DNA/locked nucleic acids (LNA) AMOs synthesized with a phosphorothioate backbone also inhibited TLR7 sensing in a sequence-dependent manner, demonstrating that the off-target effects of AMOs are not restricted to 2\u27OMe modification. Taken together, our work establishes the potential for off-target effects of AMOs on TLR7/8 function, which should be taken into account in their therapeutic development and in vivo application

    小学校理科において自然事象を科学的に説明し理解を深める児童の育成―見通しと振り返りを充実させて―

    Get PDF
    The ability for a host to recognize infection is critical for virus clearance and often begins with induction of inflammation. The PB1-F2 of pathogenic influenza A viruses (IAV) contributes to the pathophysiology of infection, although the mechanism for this is unclear. The NLRP3-inflammasome has been implicated in IAV pathogenesis, but whether IAV virulence proteins can be activators of the complex is unknown. We investigated whether PB1-F2-mediated activation of the NLRP3-inflammasome is a mechanism contributing to overt inflammatory responses to IAV infection. We show PB1-F2 induces secretion of pyrogenic cytokine IL-1β by activating the NLRP3-inflammasome, contributing to inflammation triggered by pathogenic IAV. Compared to infection with wild-type virus, mice infected with reverse engineered PB1-F2-deficient IAV resulted in decreased IL-1β secretion and cellular recruitment to the airways. Moreover, mice exposed to PB1-F2 peptide derived from pathogenic IAV had enhanced IL-1β secretion compared to mice exposed to peptide derived from seasonal IAV. Implicating the NLRP3-inflammasome complex specifically, we show PB1-F2 derived from pathogenic IAV induced IL-1β secretion was Caspase-1-dependent in human PBMCs and NLRP3-dependent in mice. Importantly, we demonstrate PB1-F2 is incorporated into the phagolysosomal compartment, and upon acidification, induces ASC speck formation. We also show that high molecular weight aggregated PB1-F2, rather than soluble PB1-F2, induces IL-1β secretion. Furthermore, NLRP3-deficient mice exposed to PB1-F2 peptide or infected with PB1-F2 expressing IAV were unable to efficiently induce the robust inflammatory response as observed in wild-type mice. In addition to viral pore forming toxins, ion channel proteins and RNA, we demonstrate inducers of NLRP3-inflammasome activation may include disordered viral proteins, as exemplified by PB1-F2, acting as host pathogen 'danger' signals. Elucidating immunostimulatory PB1-F2 mediation of NLRP3-inflammasome activation is a major step forward in our understanding of the aetiology of disease attributable to exuberant inflammatory responses to IAV infection

    Evaluation of Intussusception After Oral Monovalent Rotavirus Vaccination in South Africa

    Get PDF
    BACKGROUND: Postlicensure studies have shown an association between rotavirus vaccination and intussusception. We assessed the risk of intussusception associated with Rotarix (RV1) administration, at 6 and 14 weeks of age, in an upper-middle-income country, South Africa. METHODS: Active prospective surveillance for intussusception was conducted in 8 hospitals from September 2013 through December 2017. Retrospective case enrollment was done at 1 hospital from July 2012 through August 2013. Demographic characteristics, symptom onset, and rotavirus vaccine status were ascertained. Using the self-controlled case-series method, we estimated age-adjusted incidence rate ratios within 1–7, 8–21, and 1–21 days of rotavirus vaccination in children aged 28–275 days at onset of symptoms. In addition, age-matched controls were enrolled for a subset of cases (n = 169), and a secondary analysis was performed. RESULTS: Three hundred forty-six cases were included in the case-series analysis. Post–dose 1, there were zero intussusception cases within 1–7 days, and 5 cases within 8–21 days of vaccination. Post–dose 2, 15 cases occurred within 1–7 days, and 18 cases within 8–21 days of vaccination. There was no increased risk of intussusception 1–7 days after dose 1 (no cases observed) or dose 2 (relative incidence [RI], 1.71 [95% confidence interval {CI} .83–3.01]). Similarly, there was no increased risk 8–21 days after the first (RI, 4.01 [95% CI, .87–10.56]) or second dose (RI, .96 [95% CI, .52–1.60]). Results were similar for the case-control analysis. CONCLUSIONS: The risk of intussusception in the 21 days after the first or second dose of RV1 was not higher than the background risk among South Africa infants.Presented in part: 13th International Rotavirus Symposium, Minsk, Belarus, 29‒31 August 2018.http://cid.oxfordjournals.orgpm2020Paediatrics and Child Healt
    corecore