5 research outputs found

    Fluoxetine may worsen hyperoxia-induced lung damage in neonatal rats

    No full text
    Fluoxetine shows controversial lung effects as it prevents pulmonary hypertension in adult rats but exposure during gestation causes pulmonary hypertension in neonatal rats. In the present study, we tested the null hypothesis that the antidepressant drug fluoxetine does not modify the development of bronchopulmonary dysplasia (BPD) in neonatal rats. Experimental categories included I: room air (controls) with daily injection of saline; II: room air with daily injection of 10 mg/kg fluoxetine, i.p., during two weeks; III: 60% oxygen with daily injection of saline; and IV: 60% oxygen with daily injection of 10 mg/kg fluoxetine, i.p., during two weeks. Hyperoxia resulted in significant reduction in alveolar density and an increase in pulmonary endocrine cells, as well as increases in muscle layer areas of bronchi and arteries. Fluoxetine treatment generated a further increase in muscularisation and did not significantly modify the hyperoxia-induced reductions in alveolar density and increases in the endocrine cells. In hyperoxia, Real-Time PCR showed a lower pulmonary expression of vascular endothelial growth factor (VEGF) with no significant changes in the expression of matrix metalloproteinases (MMP) 2 and 12. Fluoxetine did not affect VEGF or MMP-2 expression but it significantly increased MMP-12 mRNA in both normoxic and hyperoxic groups. Zymographic analysis of MMP-2 activity in bronchoalveolar fluid showed a significantly reduced MMP-2 activity in hyperoxia, while fluoxetine treatment restored MMP-2 activity to levels comparable with the normoxic group. In conclusion, our data show that fluoxetine may worsen bronchial and arterial muscularisation during development of BPD and may up-regulate MMP expression or activity

    Finding FMR1 mosaicism in Fragile X syndrome

    No full text
    ObjectiveAlmost all patients with Fragile X Syndrome (FXS) exhibit a CGG repeat expansion (full mutation) in the Fragile Mental Retardation 1 gene (FMR1). Here, the authors report five unrelated males with FXS harboring a somatic full mutation/deletion mosaicism.MethodsMutational profiles were only elucidated by using a combination of molecular approaches (CGG-based PCR, Sanger sequencing, MS-MLPA, Southern blot and mPCR).ResultsFour patients exhibited small deletions encompassing the CGG repeats tract and flanking regions, whereas the remaining had a larger deletion comprising at least exon 1 and part of intron 1 of FMR1 gene. The presence of a 2-3 base pairs microhomology in proximal and distal non-recurrent breakpoints without scars supports the involvement of microhomology mediated induced repair (MMBIR) mechanism in three small deletions.ConclusionThe authors data highlights the importance of using different research methods to elucidate atypical FXS mutational profiles, which are clinically undistinguishable and may have been underestimated

    Finding <i>FMR1</i> mosaicism in Fragile X syndrome

    No full text
    <p><b>OBJECTIVE</b>: Almost all patients with Fragile X Syndrome (FXS) exhibit a CGG repeat expansion (full mutation) in the Fragile Mental Retardation 1 gene (<i>FMR1</i>). Here, the authors report five unrelated males with FXS harboring a somatic full mutation/deletion mosaicism.</p> <p><b>METHODS</b>: Mutational profiles were only elucidated by using a combination of molecular approaches (CGG-based PCR, Sanger sequencing, MS-MLPA, Southern blot and mPCR).</p> <p><b>RESULTS</b>: Four patients exhibited small deletions encompassing the CGG repeats tract and flanking regions, whereas the remaining had a larger deletion comprising at least exon 1 and part of intron 1 of <i>FMR1</i> gene. The presence of a 2-3 base pairs microhomology in proximal and distal non-recurrent breakpoints without scars supports the involvement of microhomology mediated induced repair (MMBIR) mechanism in three small deletions.</p> <p><b>CONCLUSION</b>: The authors data highlights the importance of using different research methods to elucidate atypical FXS mutational profiles, which are clinically undistinguishable and may have been underestimated.</p
    corecore