17 research outputs found

    Funktionelle Integration und strukturelle Entwicklung von adult neugebildeten hippocampalen Körnerzellen

    No full text
    Der Gyrus dentatus ist eine anatomische Region im Hippocampus und besitzt die einzigartige Fähigkeit auch im adulten Gehirn lebenslang neue Nervenzellen zu generieren. Dieser Prozess wird als adulte Neurogenese bezeichnet, stellt eine besondere Form struktureller Plastizität dar und es wurde gezeigt, dass adult neugebildete Körnerzellen im Gyrus dentatus essentiell am Prozess des hippocampalen Lernens und der Gedächtnisausbildung beteiligt sind. Es wird vermutet, dass neue Körnerzellen aufgrund ihrer charakteristischen Eigenschaften verstärkt auf neue Informationsmuster reagieren können und darauf spezialisiert sind Muster, die eine hohe Ähnlichkeit zueinander haben zu separieren und diese Unterschiede zu kodieren. Obwohl bereits eine Vielzahl von wissenschaftlichen Studien zum Verständnis der Entwicklung und Funktion adult neugebildeter Körnerzellen beitragen konnte, bestehen immer noch Unklarheiten darin, wie sich diese neuen Nervenzellen strukturell entwickeln, wann es zu einer funktionellen Integration kommt und wie diese beiden Prozesse miteinander zusammenhängen. In den vorliegenden Arbeiten wurde die strukturelle Entwicklung und synaptische Integration adult neugebildeter Körnerzellen in das bestehende hippocampale Netzwerk der Ratte und Maus unter in vivo Bedingungen untersucht. Zur Beantwortung dieser Fragen wurden Methoden aus der Anatomie, Histologie und in vivo Elektrophysiologie kombiniert. Der Nachweis neuer Körnerzellen erfolgte entweder durch immunhistologische Färbungen gegen spezifische Marker für unreife und reife Körnerzellen, Markierungen mit Bromdesoxyuridin oder retro- bzw. adenovirale intrazerebrale Injektionen und Expression von GFP. Es wurde eine in vivo Stimulation des Tractus perforans in der anästhesierten Ratte zur Langzeitpotenzierung der Körnerzellsynapsen und anschließend eine immunhistologische Analyse der Expression von synaptischen Aktivitäts- und Plastizitätsmarkern in neugebildeten und reifen Körnerzellen nach der Stimulation durchgeführt. Zusätzlich wurden detaillierte drei-dimensionale Rekonstruktion dendritischer Bäume erstellt und dendritische Dornenfortsätze an retroviral markierten Zellen analysiert. Die vorliegenden Daten belegen den generellen Verlauf der Entwicklung neugeborener Körnerzellen in zwei unterschiedliche Phasen: eine frühe dendritische Reifung und eine späte funktionelle und synaptische Integration. Neugeborene Körnerzellen zeigten ein rasches dendritisches Auswachsen, dass innerhalb der ersten drei bis vier Wochen abgeschlossen war. Während dieses Wachstumsprozesses passieren Dendriten nacheinander die Körnerzellschicht und anschließend die innere, mittlere und äußere Molekularschicht. Dadurch sind sie innerhalb ihrer morphologischen Entwicklungsphasen anatomisch auf spezifische präsynaptische Partner limitiert. In der wissenschaftlichen Literatur wird eine transiente kritische Phase beschrieben, in der neugeborene Körnerzellen eine starke Plastizität und sensitivere synaptische Erregbarkeit aufweisen. Obwohl die vorliegenden Resultate keine direkten Hinweise auf eine stärkere bzw. sensitivere Plastizität neugeborener Körnerzellen liefern, konnte eine Phase zwischen vier und fünf Wochen identifiziert werden, in der neue Körnerzellen einen sprunghaften Anstieg in ihrer Fähigkeit zur Expression synaptischer Aktivitätsmarker (z.B. Arc und c-fos) und Ausbildung struktureller Plastizität (Dendriten und Dornenfortsätze) zeigten. Die präsentierten Resultate machen deutlich, dass Dornenfortsätze neuer Körnerzellen nach elf Wochen eine vergleichbare Dichte, Größenverteilung und Plastizität aufzeigen, die vergleichbar mit denen vorhandener Körnerzellen sind. Die Fähigkeit zur dendritischen Plastizität nach synaptischer Aktivierung zeigten jedoch nur neugeborene Körnerzellen zwischen der vierten und fünften Woche. Diese Ergebnisse implizieren, dass die Integration neugebildeter Körnerzellen kontinuierlich verläuft und obwohl die vorliegenden Daten die Existenz einer dendritischen Plastizität und einen sprunghaften Anstieg synaptischer Plastizität in der vierten und fünften Woche belegen, wurden keine weiteren Hinweise auf eine transiente kritische Phase gefunden. Des Weiteren zeigten dendritische Bäume von gereiften adult neugeborenen und reifen Körnerzellen Unterschiede, die daraufhin deuten, dass neue Körnerzellen eine eigene Subpopulation darstellen

    Differential Postnatal Expression of Neuronal Maturation Markers in the Dentate Gyrus of Mice and Rats

    No full text
    The dentate gyrus (DG) is a unique structure of the hippocampus that is distinguished by ongoing neurogenesis throughout the lifetime of an organism. The development of the DG, which begins during late gestation and continues during the postnatal period, comprises the structural formation of the DG as well as the establishment of the adult neurogenic niche in the subgranular zone (SGZ). We investigated the time course of postnatal maturation of the DG in male C57BL/6J mice and male Sprague-Dawley rats based on the distribution patterns of the immature neuronal marker doublecortin (DCX) and a marker for mature neurons, calbindin (CB). Our findings demonstrate that the postnatal DG is marked by a substantial maturation with a high number of DCX-positive granule cells (GCs) during the first two postnatal weeks followed by a progression toward more mature patterns and increasing numbers of CB-positive GCs within the subsequent 2 weeks. The most substantial shift in maturation of the GC population took place between P7 and P14 in both mice and rats, when young, immature DCX-positive GCs became confined to the innermost part of the GC layer (GCL), indicative of the formation of the SGZ. These results suggest that the first month of postnatal development represents an important transition phase during which DG neurogenesis and the maturation course of the GC population becomes analogous to the process of adult neurogenesis. Therefore, the postnatal DG could serve as an attractive model for studying a growing and functionally maturing neural network. Direct comparisons between mice and rats revealed that the transition from immature DCX-positive to mature CB-positive GCs occurs more rapidly in the rat by approximately 4–6 days. The remarkable species difference in the speed of maturation on the GC population level may have important implications for developmental and neurogenesis research in different rodent species and strains

    Differential postnatal expression of neuronal maturation markers in the dentate gyrus of mice and rats

    No full text
    The dentate gyrus (DG) is a unique structure of the hippocampus that is distinguished by ongoing neurogenesis throughout the lifetime of an organism. The development of the DG, which begins during late gestation and continues during the postnatal period, comprises the structural formation of the DG as well as the establishment of the adult neurogenic niche in the subgranular zone (SGZ). We investigated the time course of postnatal maturation of the DG in male C57BL/6J mice and male Sprague-Dawley rats based on the distribution patterns of the immature neuronal marker doublecortin (DCX) and a marker for mature neurons, calbindin (CB). Our findings demonstrate that the postnatal DG is marked by a substantial maturation with a high number of DCX-positive granule cells (GCs) during the first two postnatal weeks followed by a progression toward more mature patterns and increasing numbers of CB-positive GCs within the subsequent 2 weeks. The most substantial shift in maturation of the GC population took place between P7 and P14 in both mice and rats, when young, immature DCX-positive GCs became confined to the innermost part of the GC layer (GCL), indicative of the formation of the SGZ. These results suggest that the first month of postnatal development represents an important transition phase during which DG neurogenesis and the maturation course of the GC population becomes analogous to the process of adult neurogenesis. Therefore, the postnatal DG could serve as an attractive model for studying a growing and functionally maturing neural network. Direct comparisons between mice and rats revealed that the transition from immature DCX-positive to mature CB-positive GCs occurs more rapidly in the rat by approximately 4–6 days. The remarkable species difference in the speed of maturation on the GC population level may have important implications for developmental and neurogenesis research in different rodent species and strains

    Neuroligin-3 regulates excitatory synaptic transmission and EPSP-spike coupling in the dentate gyrus in vivo

    No full text
    Neuroligin-3 (Nlgn3), a neuronal adhesion protein implicated in autism spectrum disorder (ASD), is expressed at excitatory and inhibitory postsynapses and hence may regulate neuronal excitation/inhibition balance. To test this hypothesis, we recorded field excitatory postsynaptic potentials (fEPSPs) in the dentate gyrus of Nlgn3 knockout (KO) and wild-type mice. Synaptic transmission evoked by perforant path stimulation was reduced in KO mice, but coupling of the fEPSP to the population spike was increased, suggesting a compensatory change in granule cell excitability. These findings closely resemble those in neuroligin-1 (Nlgn1) KO mice and could be partially explained by the reduction in Nlgn1 levels we observed in hippocampal synaptosomes from Nlgn3 KO mice. However, unlike Nlgn1, Nlgn3 is not necessary for long-term potentiation. We conclude that while Nlgn1 and Nlgn3 have distinct functions, both are required for intact synaptic transmission in the mouse dentate gyrus. Our results indicate that interactions between neuroligins may play an important role in regulating synaptic transmission and that ASD-related neuroligin mutations may also affect the synaptic availability of other neuroligins

    Time-lapse imaging reveals highly dynamic structural maturation of postnatally born dentate granule cells in organotypic entorhino-hippocampal slice cultures

    No full text
    Neurogenesis of hippocampal granule cells (GCs) persists throughout mammalian life and is important for learning and memory. How newborn GCs differentiate and mature into an existing circuit during this time period is not yet fully understood. We established a method to visualize postnatally generated GCs in organotypic entorhino-hippocampal slice cultures (OTCs) using retroviral (RV) GFP-labeling and performed time-lapse imaging to study their morphological development in vitro. Using anterograde tracing we could, furthermore, demonstrate that the postnatally generated GCs in OTCs, similar to adult born GCs, grow into an existing entorhino-dentate circuitry. RV-labeled GCs were identified and individual cells were followed for up to four weeks post injection. Postnatally born GCs exhibited highly dynamic structural changes, including dendritic growth spurts but also retraction of dendrites and phases of dendritic stabilization. In contrast, older, presumably prenatally born GCs labeled with an adeno-associated virus (AAV), were far less dynamic. We propose that the high degree of structural flexibility seen in our preparations is necessary for the integration of newborn granule cells into an already existing neuronal circuit of the dentate gyrus in which they have to compete for entorhinal input with cells generated and integrated earlier

    Nuclear size measurement as a valuable tool to discriminate between early and late stages in structural maturation and age of newborn DGCs.

    Get PDF
    <p>(A, D) The correlation of nuclear size with structural stage and cell age is illustrated as a dot plot (each dot represents a single cell, pooled from all animals per group) to highlight the variability. (B, E) Newborn DGCs were pooled in an early (DCX stage 1–3, cell age 7–14 dpi) and a late phase (DCX stage 4–6, cell age 21–77 dpi). The mean nuclear sizes of each group were determined and used to calculate the equidistance between early and late phases, which was then used as a threshold to discriminate and assign newborn DGCs to the early or the late phase of development (shown as red dashed line). (C, F). Based on that threshold, cells were categorized into true positive, false positive and false negative predictive values. True positive classifications were found with a reliability of about 70% across all stages. Number of animals: (A, D) DCX stage 1: n = 5, stage 2: n = 7, stage 3: n = 4, stage 4: n = 6, stage 5: n = 9, stage 6: n = 11; cell age: n = 3 per group. (B, E) DCX stage 1–3: n = 8, stage 4–6: n = 12; cell age 7–14 dpi: n = 6, age 21–77 dpi: n = 18. Error bars represent SEM.</p

    Survival rate of newborn dentate granule cells decreases over the first 4 weeks.

    No full text
    <p>(A, B) Newly born DGCs labeled with the mitosis marker BrdU (cyan) frequently displayed DCX-expression (magenta) at 7 days post BrdU injection (7 dpi; A), while there was no co-localization of BrdU and DCX at 77 dpi (B). All of the counted BrdU+ cells were Prox1+ (green; A, B). Arrows in (A) point to BrdU/DCX/Prox1+ cells. Arrowheads in (B) point to a BrdU/Thy1-GFP+ cell. Due to their intense somato-dendritic labeling, Thy1-GFP+ cells could be easily distinguished from the green nuclear Prox1 immunostaining. (C) Quantification of BrdU/Prox1+ cells revealed a decline in survival of newborn DGCs between 7 and 35 dpi, whereas the total number of BrdU+ cells did not change between 35 and 77 dpi. Compared to the first week post BrdU injection, 14% of BrdU/Prox1+ cells were retained at 35 dpi, after which there was no further cell loss. (D) The number of BrdU/Prox1+ DGCs that expressed DCX also decreased between 7 and 35 dpi. No DCX/BrdU/Prox1+ cells could be detected between 35 and 77 dpi. All analyses were performed in the suprapyramidal blade of the right dorsal dentate gyrus (n = 3 animals for each group, 3 sections per animal). Error bars represent SEM. Scale bars in (A, B): 10 μm. GCL, granule cell layer; SGZ, subgranular zone.</p

    Doublecortin-labeling does not co-localize with Thy1-GFP expression.

    Get PDF
    <p>(A) Frontal section of the dorsal hippocampal formation from a Thy-1-GFP mouse. Thy1-GFP expression was observed in a subpopulation of dentate granule cells (DGCs) and was expressed throughout dendritic processes of DGCs which extend into the inner molecular layer (IML) and outer molecular layer (OML) toward the hippocampal fissure (hif). Prospero homeobox protein 1 (Prox1, magenta), a specific nuclear marker of granule cells, was confined to granule cell nuclei of the granule cell layer (GCL). Doublecortin (DCX, cyan) labeled young maturing cells that are positioned in the subgranular zone (SGZ). (B) There was no co-localization of DCX and Thy1-GFP which suggests that Thy1-GFP is generally expressed in more mature (DCX-) DGCs. Both DCX+ and Thy1-GFP+ granule cells co-localized with Prox1 even during early stages of DCX expression (see small DCX+ cells in the SGZ). Scale bars: (A) 100 μm; (B) 20 μm. CA1, Cornu Ammonis area 1; H, hilus.</p

    The Role of Sogo-Zaibatsu in the Economic Development of Modern Japan

    Get PDF
    <div><p>Adult neurogenesis is frequently studied in the mouse hippocampus. We examined the morphological development of adult-born, immature granule cells in the suprapyramidal blade of the septal dentate gyrus over the period of 7–77 days after mitosis with BrdU-labeling in 6-weeks-old male Thy1-GFP mice. As Thy1-GFP expression was restricted to maturated granule cells, it was combined with doublecortin-immunolabeling of immature granule cells. We developed a novel classification system that is easily applicable and enables objective and direct categorization of newborn granule cells based on the degree of dendritic development in relation to the layer specificity of the dentate gyrus. The structural development of adult-generated granule cells was correlated with age, albeit with notable differences in the time course of development between individual cells. In addition, the size of the nucleus, immunolabeled with the granule cell specific marker Prospero-related homeobox 1 gene, was a stable indicator of the degree of a cell's structural maturation and could be used as a straightforward parameter of granule cell development. Therefore, further studies could employ our doublecortin-staging system and nuclear size measurement to perform investigations of morphological development in combination with functional studies of adult-born granule cells. Furthermore, the Thy1-GFP transgenic mouse model can be used as an additional investigation tool because the reporter gene labels granule cells that are 4 weeks or older, while very young cells could be visualized through the immature marker doublecortin. This will enable comparison studies regarding the structure and function between young immature and older matured granule cells.</p></div

    Structural maturation of DCX-expressing newborn DGCs is correlated with cell age.

    No full text
    <p>(A) DCX+ cells were categorized into six stages according to the degree of their structural maturation. Cells were considered to be in stage 1 when the soma was positioned in the subgranular zone (SGZ) and no dendritic processes were visible; stage 2 when the cell displayed short processes that were located within the SGZ; stage 3 when the principal dendritic process projected into the inner half of the granule cell layer (GCL); stage 4 when the leading dendrite reached the outer half of the GCL; stage 5 when the leading dendrite extended into the inner molecular layer (IML); and stage 6 when the leading dendrite reached the outer molecular layer (OML). (B, C) Staging of newborn DCX+ DGCs at different time points revealed a marked shift in stage distribution according to cell age. At 7 dpi, the majority of newborn DCX+ DGCs were classified as stage 1 or 2, while at 14 dpi, the majority of cells were classified as stage 5 or 6. At 28 dpi, about 92% of the DCX+ cells were classified as stage 6, but a small percentage of DCX+ cells were classified as stage 3. (D, E) The distribution of DCX+ cell ages according to each stage illustrates the prevalence of DCX stages 1–4 at 7 dpi and DCX stages 5–6 at 14 to 28 dpi. No BrdU/DCX+ DGCs were observed after 28 dpi. Notably, DCX+ cells of stages 1–6 co-existed at the same time points (7–21 dpi), suggesting a variability in the maturation time course of individual neurons. All data were obtained from 3 animals (n = 3) per group, and 3 sections per animal. Error bars represent SEM. Scale bar in (A): 20μm.</p
    corecore