10 research outputs found

    Gut microbiota composition alterations are associated with the onset of diabetes in kidney transplant recipients.

    No full text
    MethodsPatients transplanted at our institution provided fecal samples before, and 3-9 months after KT. Fecal bacterial DNA was extracted and 9 bacteria or bacterial groups were quantified by qPCR.Results50 patients (19 controls without diabetes, 15 who developed New Onset Diabetes After Transplantation, NODAT, and 16 with type 2 diabetes before KT) were included. Before KT, Lactobacillus sp. tended to be less frequently detected in controls than in those who would become diabetic following KT (NODAT) and in initially diabetic patients (60%, 87.5%, and 100%, respectively, p = 0.08). The relative abundance of Faecalibacterium prausnitzii was 30 times lower in initially diabetic patients than in controls (p = 0.002). The relative abundance of F. prausnitzii of NODAT patients was statistically indistinguishable from controls and from diabetic patients. The relative abundance of Lactobacillus sp. increased following KT in NODAT and in initially diabetic patients (20-fold, p = 0.06, and 25-fold, p = 0.02, respectively). In contrast, the proportion of Akkermansia muciniphila decreased following KT in NODAT and in initially diabetic patients (2,500-fold, p = 0.04, and 50,000-fold, pConclusionAn alteration of the gut microbiota composition involving Lactobacillus sp., A. muciniphila and F. prausnitzii is associated with the glycemic status in KT recipients, raising the question of their role in the genesis of NODAT

    First Recombinant High-Density Lipoprotein Particles Administration in a Severe ICU COVID-19 Patient, a Multi-Omics Exploratory Investigation

    No full text
    International audienceHigh-density lipoproteins (HDLs) have multiple endothelioprotective properties. During SARS-CoV-2 infection, HDL-cholesterol (HDL-C) concentration is markedly reduced, and studies have described severe impairment of the functionality of HDL particles. Here, we report a multi-omic investigation of the first administration of recombinant HDL (rHDL) particles in a severe COVID-19 patient in an intensive care unit. Plasma ApoA1 increased and HDL-C decreased after each recombinant HDL injection, suggesting that these particles were functional in terms of reverse cholesterol transport. The proportion of large HDL particles also increased after injection of recombinant HDL. Shotgun proteomics performed on HDLs isolated by ultracentrifugation indicated that ApoA1 was more abundant after injections whereas most of the pro-inflammatory proteins identified were less abundant. Assessment of Serum amyloid A-1, inflammatory markers, and cytokines showed a significant decrease for most of them during recombinant HDL infusion. Our results suggest that recombinant HDL infusion is feasible and a potential therapeutic strategy to be explored in COVID-19 patients

    Lipoprotein concentrations over time in the intensive care unit COVID-19 patients: Results from the ApoCOVID study

    No full text
    INTRODUCTION: Severe acute respiratory syndrome coronavirus2 has caused a global pandemic of coronavirus disease 2019 (COVID-19). High-density lipoproteins (HDLs), particles chiefly known for their reverse cholesterol transport function, also display pleiotropic properties, including anti-inflammatory or antioxidant functions. HDLs and low-density lipoproteins (LDLs) can neutralize lipopolysaccharides and increase bacterial clearance. HDL cholesterol (HDL-C) and LDL cholesterol (LDL-C) decrease during bacterial sepsis, and an association has been reported between low lipoprotein levels and poor patient outcomes. The goal of this study was to characterize the lipoprotein profiles of severe ICU patients hospitalized for COVID-19 pneumonia and to assess their changes during bacterial ventilator-associated pneumonia (VAP) superinfection. METHODS: A prospective study was conducted in a university hospital ICU. All consecutive patients admitted for COVID-19 pneumonia were included. Lipoprotein levels were assessed at admission and daily thereafter. The assessed outcomes were survival at 28 days and the incidence of VAP. RESULTS: A total of 48 patients were included. Upon admission, lipoprotein concentrations were low, typically under the reference values ([HDL-C] = 0.7[0.5–0.9] mmol/L; [LDL-C] = 1.8[1.3–2.3] mmol/L). A statistically significant increase in HDL-C and LDL-C over time during the ICU stay was found. There was no relationship between HDL-C and LDL-C concentrations and mortality on day 28 (log-rank p = 0.554 and p = 0.083, respectively). A comparison of alive and dead patients on day 28 did not reveal any differences in HDL-C and LDL-C concentrations over time. Bacterial VAP was frequent (64%). An association was observed between HDL-C and LDL-C concentrations on the day of the first VAP diagnosis and mortality ([HDL-C] = 0.6[0.5–0.9] mmol/L in survivors vs. [HDL-C] = 0.5[0.3–0.6] mmol/L in nonsurvivors, p = 0.036; [LDL-C] = 2.2[1.9–3.0] mmol/L in survivors vs. [LDL-C] = 1.3[0.9–2.0] mmol/L in nonsurvivors, p = 0.006). CONCLUSION: HDL-C and LDL-C concentrations upon ICU admission are low in severe COVID-19 pneumonia patients but are not associated with poor outcomes. However, low lipoprotein concentrations in the case of bacterial superinfection during ICU hospitalization are associated with mortality, which reinforces the potential role of these particles during bacterial sepsis

    Impact of prior antibiotic therapy on severe necrotizing soft-tissue infections in ICU patients: results from a French retrospective and observational study

    No full text
    International audienceAbstract Necrotizing soft-tissue infection (NSTI) is a life-threatening pathology that often requires management in intensive care unit (ICU). Therapies consist of early diagnosis, adequate surgical source control, and antimicrobial therapy. Whereas guidelines underline the need for appropriate routine microbiological cultures before starting antimicrobial therapy in patients with suspected sepsis or septic shock, delaying adequate therapy also strongly increases mortality. The aim of the present study was to compare the characteristics and outcomes of patients hospitalized in ICU for NSTI according to their antimicrobial therapy exposure > 24 h before surgery (called the exposed group) or not (called the unexposed group) before surgical microbiological sampling. We retrospectively included 100 consecutive patients admitted for severe NSTI. The exposed group consisted of 23(23%) patients, while 77(77%) patients belonged to the unexposed group. The demographic and underlying disease conditions were similar between the two groups. Microbiological cultures of surgical samples were positive in 84 patients and negative in 16 patients, including 3/23 (13%) patients and 13/77 (17%) patients in the exposed and unexposed groups, respectively ( p = 0.70). The distribution of microorganisms was comparable between the two groups. The main antimicrobial regimens for empiric therapy were also similar, and the proportions of adequacy were comparable ( n = 60 (84.5%) in the unexposed group vs. n = 19 (86.4%) in the exposed group, p = 0.482). ICU and hospital lengths of stay and mortality rates were similar between the two groups. In conclusion, in a population of severe ICU NSTI patients, antibiotic exposure before sampling did not impact either culture sample positivity or microbiological findings

    First Recombinant High-Density Lipoprotein Particles Administration in a Severe ICU COVID-19 Patient, a Multi-Omics Exploratory Investigation

    No full text
    High-density lipoproteins (HDLs) have multiple endothelioprotective properties. During SARS-CoV-2 infection, HDL-cholesterol (HDL-C) concentration is markedly reduced, and studies have described severe impairment of the functionality of HDL particles. Here, we report a multi-omic investigation of the first administration of recombinant HDL (rHDL) particles in a severe COVID-19 patient in an intensive care unit. Plasma ApoA1 increased and HDL-C decreased after each recombinant HDL injection, suggesting that these particles were functional in terms of reverse cholesterol transport. The proportion of large HDL particles also increased after injection of recombinant HDL. Shotgun proteomics performed on HDLs isolated by ultracentrifugation indicated that ApoA1 was more abundant after injections whereas most of the pro-inflammatory proteins identified were less abundant. Assessment of Serum amyloid A-1, inflammatory markers, and cytokines showed a significant decrease for most of them during recombinant HDL infusion. Our results suggest that recombinant HDL infusion is feasible and a potential therapeutic strategy to be explored in COVID-19 patients

    Outcomes of Stenotrophomonas maltophilia hospital-acquired pneumonia in intensive care unit: a nationwide retrospective study

    No full text
    International audienceBackground: There is little descriptive data on Stenotrophomonas maltophilia hospital-acquired pneumonia (HAP) in critically ill patients. The optimal modalities of antimicrobial therapy remain to be determined. Our objective was to describe the epidemiology and prognostic factors associated with S. maltophilia pneumonia, focusing on antimicrobial therapy.Methods: This nationwide retrospective study included all patients admitted to 25 French mixed intensive care units between 2012 and 2017 with hospital-acquired S. maltophilia HAP during intensive care unit stay. Primary endpoint was time to in-hospital death. Secondary endpoints included microbiologic effectiveness and antimicrobial therapeutic modalities such as delay to appropriate antimicrobial treatment, mono versus combination therapy, and duration of antimicrobial therapy.Results: Of the 282 patients included, 84% were intubated at S. maltophilia HAP diagnosis for duration of 11 [5-18] days. The Simplified Acute Physiology Score II was 47 [36-63], and the in-hospital mortality was 49.7%. Underlying chronic pulmonary comorbidities were present in 14.1% of cases. Empirical antimicrobial therapy was considered effective on S. maltophilia according to susceptibility patterns in only 30% of cases. Delay to appropriate antimicrobial treatment had, however, no significant impact on the primary endpoint. Survival analysis did not show any benefit from combination antimicrobial therapy (HR = 1.27, 95%CI [0.88; 1.83], p = 0.20) or prolonged antimicrobial therapy for more than 7 days (HR = 1.06, 95%CI [0.6; 1.86], p = 0.84). No differences were noted in in-hospital death irrespective of an appropriate and timely empiric antimicrobial therapy between mono- versus polymicrobial S. maltophilia HAP (p = 0.273). The duration of ventilation prior to S. maltophilia HAP diagnosis and ICU length of stay were shorter in patients with monomicrobial S. maltophilia HAP (p = 0.031 and p = 0.034 respectively).Conclusions: S. maltophilia HAP occurred in severe, long-stay intensive care patients who mainly required prolonged invasive ventilation. Empirical antimicrobial therapy was barely effective while antimicrobial treatment modalities had no significant impact on hospital survival.Trial registration: clinicaltrials.gov, NCT03506191
    corecore