433 research outputs found

    Content-based video copy detection based on motion vectors estimated using a lower frame rate

    Get PDF
    Cataloged from PDF version of article.We propose a motion vector based Video Content Based Copy Detection (VCBCD) method. One of the signatures of a given video is motion vectors extracted from image sequences. However, when consecutive image frames are used they are not descriptive enough because most vectors are either too small or they appear to scatter in all directions. We calculate motion vectors in a lower frame rate than the actual frame rate of the video to overcome this problem. As a result we obtain large vectors and they represent a given video in a robust manner. We carry out experiments for various parameters and present the results

    Astrocytes engage unique molecular programs to engulf pruned neuronal debris from distinct subsets of neurons

    Get PDF
    Precise neural circuit assembly is achieved by initial overproduction of neurons and synapses, followed by refinement through elimination of exuberant neurons and synapses. Glial cells are the primary cells responsible for clearing neuronal debris, but the cellular and molecular basis of glial pruning is poorly defined. Here we show that Drosophila larval astrocytes transform into phagocytes through activation of a cell-autonomous, steroid-dependent program at the initiation of metamorphosis and are the primary phagocytic cell type in the pupal neuropil. We examined the developmental elimination of two neuron populations-mushroom body (MB) gamma neurons and vCrz(+) neurons (expressing Corazonin [Crz] neuropeptide in the ventral nerve cord [VNC])-where only neurites are pruned or entire cells are eliminated, respectively. We found that MB gamma axons are engulfed by astrocytes using the Draper and Crk/Mbc/dCed-12 signaling pathways in a partially redundant manner. In contrast, while elimination of vCrz(+) cell bodies requires Draper, elimination of vCrz(+) neurites is mediated by Crk/Mbc/dCed-12 but not Draper. Intriguingly, we also found that elimination of Draper delayed vCrz(+) neurite degeneration, suggesting that glia promote neurite destruction through engulfment signaling. This study identifies a novel role for astrocytes in the clearance of synaptic and neuronal debris and for Crk/Mbc/dCed-12 as a new glial pathway mediating pruning and reveals, unexpectedly, that the engulfment signaling pathways engaged by glia depend on whether neuronal debris was generated through cell death or local pruning

    Ensheathing glia function as phagocytes in the adult Drosophila brain

    Get PDF
    The mammalian brain contains many subtypes of glia that vary in their morphologies, gene expression profiles, and functional roles; however, the functional diversity of glia in the adult Drosophila brain remains poorly defined. Here we define the diversity of glial subtypes that exist in the adult Drosophila brain, show they bear striking similarity to mammalian brain glia, and identify the major phagocytic cell type responsible for engulfing degenerating axons after acute axotomy. We find that neuropil regions contain two different populations of glia: ensheathing glia and astrocytes. Ensheathing glia enwrap major structures in the adult brain, but are not closely associated with synapses. Interestingly, we find these glia uniquely express key components of the glial phagocytic machinery (e.g., the engulfment receptor Draper, and dCed-6), respond morphologically to axon injury, and autonomously require components of the Draper signaling pathway for successful clearance of degenerating axons from the injured brain. Astrocytic glia, in contrast, do not express Draper or dCed-6, fail to respond morphologically to axon injury, and appear to play no role in clearance of degenerating axons from the brain. However, astrocytic glia are closely associated with synaptic regions in neuropil, and express excitatory amino acid transporters, which are presumably required for the clearance of excess neurotransmitters at the synaptic cleft. Together these results argue that ensheathing glia and astrocytes are preprogrammed cell types in the adult Drosophila brain, with ensheathing glia acting as phagocytes after axotomy, and astrocytes potentially modulating synapse formation and signaling

    Expression of a catalytically inactive mutant form of glutathione peroxidase 4 (Gpx4) confers a dominant-negative effect in male fertility.

    Get PDF
    The selenoenzyme Gpx4 is essential for early embryogenesis and cell viability for its unique function to prevent phospholipid oxidation. Recently, the cytosolic form of Gpx4 was identified as an upstream regulator of a novel form of non-apoptotic cell death, called ferroptosis, whereas the mitochondrial isoform of Gpx4 (mGpx4) was previously shown to be crucial for male fertility. Here, we generated and analyzed mice with targeted mutation of the active site selenocysteine (Sec) of Gpx4 (Gpx4_U46S). Mice homozygous for Gpx4_U46S died at the same embryonic stage (E7.5) as Gpx4-/- embryos as expected. Surprisingly, male mice heterozygous for Gpx4_U46S presented subfertility. Subfertility was manifested in a reduced number of litters from heterozygous breedings and an impairment of spermatozoa to fertilize oocytes in vitro. Morphologically, sperm isolated from heterozygous Gpx4_U46S mice revealed many structural abnormalities particularly in the spermatozoan midpiece due to improper oxidation and polymerization of sperm capsular proteins and malformation of the mitochondrial capsule surrounding and stabilizing sperm mitochondria. These findings are reminiscent of sperm isolated from selenium-deprived rodents or from mice specifically lacking mGpx4. Due to a strongly facilitated incorporation of Ser in the polypeptide chain as compared to Sec at the UGA codon, expression of the catalytically inactive Gpx4_U46S was found to be strongly increased. Since the stability of the mitochondrial capsule of mature spermatozoa depends on the moonlighting function of Gpx4 both as an enzyme oxidizing capsular protein thiols and being a structural protein, tightly controlled expression of functional Gpx4 emerges being key for full male fertility

    CCD UBV and Gaia DR3 based analysis of NGC 189, NGC 1758 and NGC 7762 open clusters

    Full text link
    This paper presents photometric, astrometric, and kinematic analyses of the open clusters NGC 189, NGC 1758 and NGC 7762 based on CCD UBV photometric and Gaia Data Release 3 (DR3) data. According to membership analyses, we identified 32, 57 and 106 most probable member stars with membership probabilities P0.5P\geq 0.5 in NGC 189, NGC 1758 and NGC 7762, respectively. The color excesses and photometric metallicities of each cluster were determined separately using UBV two-color diagrams. The color excess E(BV)E(B-V) is 0.590±0.0230.590 \pm 0.023 mag for NGC 189, 0.310±0.0220.310 \pm 0.022 mag for NGC 1758 and 0.640±0.0170.640 \pm 0.017 mag for NGC 7762. The photometric metallicity [Fe/H] is 0.08±0.03-0.08 \pm 0.03 dex for both NGC 189 and NGC 1758, and 0.12±0.02-0.12 \pm 0.02 dex for NGC 7762. Distance moduli and ages of the clusters were obtained by comparing PARSEC isochrones with the color-magnitude diagrams constructed from UBV and Gaia photometric data. During this process, we kept as constant color excess and metallicity for each cluster. The estimated isochrone distance is 1201±531201 \pm 53 pc for NGC 189, 902±33902 \pm 33 pc for NGC 1758 and 911±31911 \pm 31 pc for NGC 7762. These are compatible with the values obtained from trigonometric parallax. Ages of the clusters are 500±50500\pm 50 Myr, 650±50650\pm 50 Myr and 2000±2002000\pm 200 Myr for NGC 189, NGC 1758 and NGC 7762, respectively. Galactic orbit integration of the clusters showed that NGC 1758 completely orbits outside the solar circle, while NGC 189 and NGC 7762 enter the solar circle during their orbits.Comment: 25 pages, 11 figures and 6 tables, accepted for publication in Advances in Space Researc

    Conditional Reverse Tet-Transactivator Mouse Strains for the Efficient Induction of TRE-Regulated Transgenes in Mice

    Get PDF
    Tetracycline or doxycycline (dox)-regulated control of genetic elements allows inducible, reversible and tissue specific regulation of gene expression in mice. This approach provides a means to investigate protein function in specific cell lineages and at defined periods of development and disease. Efficient and stable regulation of cDNAs or non-coding elements (e.g. shRNAs) downstream of the tetracycline-regulated element (TRE) requires the robust expression of a tet-transactivator protein, commonly the reverse tet-transactivator, rtTA. Most rtTA strains rely on tissue specific promoters that often do not provide sufficient rtTA levels for optimal inducible expression. Here we describe the generation of two mouse strains that enable Cre-dependent, robust expression of rtTA3, providing tissue-restricted and consistent induction of TRE-controlled transgenes. We show that these transgenic strains can be effectively combined with established mouse models of disease, including both Cre/LoxP-based approaches and non Cre-dependent disease models. The integration of these new tools with established mouse models promises the development of more flexible genetic systems to uncover the mechanisms of development and disease pathogenesis

    Secondary metabolites of Phlomis viscosa and their biological activities

    Get PDF
    Further phytochemical studies on the aerial parts of Phlomis viscosa (Lamiaceae) led to the isolation of 24 compounds: 3 iridoid glycosides, 10 phenylethanoid glycosides, a megastigmane glycoside and a hydroquinone glycoside, as well as 2 lignan glucosides and 7 neolignan glucosides, 1 of which is new (17b). Compound 17b was obtained as a minor component of an inseparable mixture (2:1) of 2 neolignan glucosides (17a/b), and characterized as 3',4-O-dimethylcedrusin 9-O-b -glucopyranoside. Full NMR data of the known 8-O-4' neolignan glucoside, erythro-1-(4-O-b-glucopyranosyl-3-methoxyphenyl)- 2-{2-methoxyl-4-[1-(E)-propene-3-ol]-phenoxyl}-propane-1,3-diol (18) are also reported. All isolated compounds were screened for cell growth inhibition versus 3 tumor cell lines (MCF7, NCI-H460, and SF-268) and several phenylethanoid glycosides were found to possess weak antitumoral activity. The phenylethanoid glycosides were also evaluated for their free radical (DPPH) scavenging, antibacterial and antifungal activities. The free radical (DPPH) scavenging activities of verbascoside (4), isoacteoside (5), forsythoside B (10), myricoside (13) and samioside (14) were found to be comparable to that of dl-a -tocopherol. Compounds 4, 5, 10 and 14 (MIC: 500 m g/mL) as well as Leucosceptoside A (8) and 13 (MIC:1000 m g/mL) showed very weak activity against Gram (+) bacteria

    Glial wingless/Wnt regulates glutamate receptor clustering and synaptic physiology at the Drosophila neuromuscular junction

    Get PDF
    Glial cells are emerging as important regulators of synapse formation, maturation, and plasticity through the release of secreted signaling molecules. Here we use chromatin immunoprecipitation along with Drosophila genomic tiling arrays to define potential targets of the glial transcription factor Reversed polarity (Repo). Unexpectedly, we identified wingless (wg), a secreted morphogen that regulates synaptic growth at the Drosophila larval neuromuscular junction (NMJ), as a potential Repo target gene. We demonstrate that Repo regulates wg expression in vivo and that local glial cells secrete Wg at the NMJ to regulate glutamate receptor clustering and synaptic function. This work identifies Wg as a novel in vivo glial-secreted factor that specifically modulates assembly of the postsynaptic signaling machinery at the Drosophila NMJ
    corecore