139 research outputs found

    C1 inhibitor deficiency: 2014 United Kingdom consensus document

    Get PDF
    C1 inhibitor deficiency is a rare disorder manifesting with recurrent attacks of disabling and potentially life-threatening angioedema. Here we present an updated 2014 United Kingdom consensus document for the management of C1 inhibitor-deficient patients, representing a joint venture between the United Kingdom Primary Immunodeficiency Network and Hereditary Angioedema UK. To develop the consensus, we assembled a multi-disciplinary steering group of clinicians, nurses and a patient representative. This steering group first met in 2012, developing a total of 48 recommendations across 11 themes. The statements were distributed to relevant clinicians and a representative group of patients to be scored for agreement on a Likert scale. All 48 statements achieved a high degree of consensus, indicating strong alignment of opinion. The recommendations have evolved significantly since the 2005 document, with particularly notable developments including an improved evidence base to guide dosing and indications for acute treatment, greater emphasis on home therapy for acute attacks and a strong focus on service organisation. This article is protected by copyright. All rights reserved

    Characterisation of CD154+ T cells following ex vivo allergen stimulation illustrates distinct T cell responses to seasonal and perennial allergens in allergic and non-allergic individuals

    Get PDF
    Background Allergic sensitisation has been ascribed to a dysregulated relationship between allergen-specific Th1, Th2 and regulatory T cells. We sought to utilise our short-term CD154 detection method to further analyse the relationship between these T cell subsets and investigate differences between seasonal and perennial allergens. Using peripheral blood samples from grass-allergic, cat-allergic and healthy non-atopic subjects, we compared the frequencies and phenotype of CD154-positive T helper cells following stimulation with seasonal (grass) and perennial (cat dander) allergens. Results We identified a higher frequency of CD154+ T cells in grass-allergic individuals compared to healthy controls; this difference was not evident following stimulation with cat allergen. Activated Th1, Th2 and Tr1-like cells, that co-express IFNγ, IL4 and IL10, respectively, were identified in varying proportions in grass-allergic, cat-allergic and non-allergic individuals. We confirmed a close correlation between Th1, Th2 and Tr1-like cell frequency in non-allergic volunteers, such that the three parameters increased together to maintain a low Th2: Th1 ratio. This relationship was dysregulated in grass-allergic individuals with no correlation between the T cell subsets and a higher Th2: Th1 ratio. We confirmed previous reports of a late-differentiated T cell phenotype in response to seasonal allergens compared to early-differentiated T cell responses to perennial allergens. Conclusions The findings confirm our existing work illustrating an important balance between Th1, Th2 and Tr1-like responses to allergens in health, where Th2 responses are frequently observed, but balanced by Th1 and regulatory responses. We confirm previous tetramer-based reports of phenotypic differences in T cells responding to seasonal and perennial allergens

    Neuroinflammation in Traumatic Brain Injury

    Get PDF
    Neuroinflammation following traumatic brain injury (TBI) is an important cause of secondary brain injury that perpetuates the duration and scope of disease after initial impact. This chapter discusses the pathophysiology of acute and chronic neuroinflammation, providing insight into factors that influence the acute clinical course and later functional outcomes. Secondary injury due to neuroinflammation is described by mechanisms of action such as ischemia, neuroexcitotoxicity, oxidative stress, and glymphatic and lymphatic dysfunction. Neurodegenerative sequelae of inflammation, including chronic traumatic encephalopathy, which are important to understand for clinical practice, are detailed by disease type. Prominent research topics of TBI animal models and biomarkers of traumatic neuroinflammation are outlined to provide insight into the advances in TBI research. We then discuss current clinical treatments in TBI and their implications in preventing inflammation. To complete the chapter, recent research models, novel biomarkers, and future research directions aimed at mitigating TBI will be described and will highlight novel therapeutic targets. Understanding the pathophysiology and contributors of neuroinflammation after TBI will aid in future development of prophylaxis strategies, as well as more tailored management and treatment algorithms. This topic chapter is important to both clinicians and basic and translational scientists, with the goal of improving patient outcomes in this common disease

    Parathyroid hormone receptor 1 (PTHR1) is a prognostic indicator in canine osteosarcoma

    Get PDF
    Osteosarcoma (OS) is the most common malignant primary bone tumour in humans and dogs. Several studies have established the vital role of parathyroid hormone-related protein (PTHrP) and its receptor (PTHR1) in bone formation and remodeling. In addition, these molecules play a role in the progression and metastasis of many human tumour types. This study investigated the expression of PTHR1 and PTHrP in canine OS tissues and assessed their prognostic value. Formalin-fixed, paraffin-embedded tissue samples from 50 dogs diagnosed with primary OS were immunolabeled with antibodies specific for PTHR1 and PTHrP. The immunostaining intensity of tumours from patients with OS was correlated with survival time. Both PTHR1 and PTHrP were detected in all OS samples (n = 50). Dogs with OS tumours showing high immunostaining intensity for PTHR1 (n = 36) had significantly shorter survival times (p = 0.028, Log Rank; p = 0.04, Cox regression) when compared with OS that had low immunostaining intensity for PTHR1 (n = 14).PTHrP immunostaining intensity did not correlate with survival time (p > 0.05). The results of this study indicate that increased expression of PTHR1 antigen in canine OS is associated with poor prognosis. This suggests that PTHR1 may be useful as a prognostic indicator in canine OS

    Zeolite structures loading with an anticancer compound as drug delivery systems

    Get PDF
    The authors are thankful to Dr. A. S. Azevedo for collecting the powder diffraction data.Two different structures of zeolites, faujasite (FAU) and Linde type A (LTA), were studied to investigate their suitability for drug delivery systems (DDS). The zeolites in the sodium form (NaY and NaA) were used as hosts for encapsulation of α-cyano-4- hydroxycinnamic acid (CHC). CHC, an experimental anticancer drug, was encapsulated in both zeolites by diffusion in liquid phase. These new drug delivery systems, CHC@zeolite, were characterized by spectroscopic techniques (FTIR, 1H NMR, 13C and 27Al solidstate MAS NMR, and UV−vis), chemical analysis, powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect of the zeolites and CHC@zeolite drug deliveries on HCT-15 human colon carcinoma cell line viability was evaluated. Both zeolites alone revealed no toxicity to HCT-15 cancer cells. Importantly, CHC@zeolite exhibit an inhibition of cell viability up to 585-fold, when compared to the non-encapsulated drug. These results indicate the potential of the zeolites for drug loading and delivery into cancer cells to induce cell deathO.M. and R.A. are recipients of fellowships (SFRH/BD/36463/2007, SFRH/BI/51118/2010) from Fundação para a Ciência e a Tecnologia (FCT, Portugal). This work was supported by the FCT projects refs PEst-C/ QUI/UI0686/2011, PEst-C/CTM/LA0011/2011, and PTDC/ SAU-FCF/104347/2008, under the scope of “Programa Operacional Temático Factores de Competitividade” (COMPETE) of “Quadro Comunitário de Apoio III” and cofinanced by Fundo Comunitário Europeu FEDER, and the Centre of Chemistry and Life and Health Sciences Research Institute (University of Minho, Portugal)

    Association of FcγRIIa R131H polymorphism with idiopathic pulmonary fibrosis severity and progression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A significant genetic component has been described for idiopathic pulmonary fibrosis (IPF). The R131H (rs1801274) polymorphism of the IgG receptor FcγRIIa determines receptor affinity for IgG subclasses and is associated with several chronic inflammatory diseases. We investigated whether this polymorphism is associated with IPF susceptibility or progression.</p> <p>Methods</p> <p>In a case-control study, we compared the distribution of FcγRIIa R131H genotypes in 142 patients with IPF and in 218 controls using allele-specific PCR amplification.</p> <p>Results</p> <p>No differences in the frequency of FcγRIIa genotypes were evident between IPF patients and control subjects. However, significantly impaired pulmonary function at diagnosis was observed in HH compared to RR homozygotes, with evidence of more severe restriction (reduced forced vital capacity (FVC)) and lower diffusing capacity for carbon monoxide (D<smcaps>L</smcaps><sub>CO</sub>). Similarly, increased frequency of the H131 allele was observed in patients with severe disease (D<smcaps>L</smcaps><sub>CO </sub>< 40% predicted) (0.53 vs. 0.38; p = 0.03). Furthermore, the H131 allele was associated with progressive pulmonary fibrosis as determined by > 10% drop in FVC and/or > 15% fall in D<smcaps>L</smcaps><sub>CO </sub>at 12 months after baseline (0.48 vs. 0.33; p = 0.023).</p> <p>Conclusions</p> <p>These findings support an association between the FcγRIIa R131H polymorphism and IPF severity and progression, supporting the involvement of immunological mechanisms in IPF pathogenesis.</p

    Modulation of T Cell Function by Combination of Epitope Specific and Low Dose Anticytokine Therapy Controls Autoimmune Arthritis

    Get PDF
    Innate and adaptive immunity contribute to the pathogenesis of autoimmune arthritis by generating and maintaining inflammation, which leads to tissue damage. Current biological therapies target innate immunity, eminently by interfering with single pro-inflammatory cytokine pathways. This approach has shown excellent efficacy in a good proportion of patients with Rheumatoid Arthritis (RA), but is limited by cost and side effects. Adaptive immunity, particularly T cells with a regulatory function, plays a fundamental role in controlling inflammation in physiologic conditions. A growing body of evidence suggests that modulation of T cell function is impaired in autoimmunity. Restoration of such function could be of significant therapeutic value. We have recently demonstrated that epitope-specific therapy can restore modulation of T cell function in RA patients. Here, we tested the hypothesis that a combination of anti-cytokine and epitope-specific immunotherapy may facilitate the control of autoimmune inflammation by generating active T cell regulation. This novel combination of mucosal tolerization to a pathogenic T cell epitope and single low dose anti-TNFα was as therapeutically effective as full dose anti-TNFα treatment. Analysis of the underlying immunological mechanisms showed induction of T cell immune deviation

    Tracking Antigen-Specific T-Cells during Clinical Tolerance Induction in Humans

    Get PDF
    Allergen immunotherapy presents an opportunity to define mechanisms of induction of clinical tolerance in humans. Significant progress has been made in our understanding of changes in T cell responses during immunotherapy, but existing work has largely been based on functional T cell assays. HLA-peptide-tetrameric complexes allow the tracking of antigen-specific T-cell populations based on the presence of specific T-cell receptors and when combined with functional assays allow a closer assessment of the potential roles of T-cell anergy and clonotype evolution. We sought to develop tools to facilitate tracking of antigen-specific T-cell populations during wasp-venom immunotherapy in people with wasp-venom allergy. We first defined dominant immunogenic regions within Ves v 5, a constituent of wasp venom that is known to represent a target antigen for T-cells. We next identified HLA-DRB1*1501 restricted epitopes and used HLA class II tetrameric complexes alongside cytokine responses to Ves v 5 to track T-cell responses during immunotherapy. In contrast to previous reports, we show that there was a significant initial induction of IL-4 producing antigen-specific T-cells within the first 3–5 weeks of immunotherapy which was followed by reduction of circulating effector antigen-specific T-cells despite escalation of wasp-venom dosage. However, there was sustained induction of IL-10-producing and FOXP3 positive antigen-specific T cells. We observed that these IL-10 producing cells could share a common precursor with IL-4-producing T cells specific for the same epitope. Clinical tolerance induction in humans is associated with dynamic changes in frequencies of antigen-specific T-cells, with a marked loss of IL-4-producing T-cells and the acquisition of IL-10-producing and FOXP3-positive antigen-specific CD4+ T-cells that can derive from a common shared precursor to pre-treatment effector T-cells. The development of new approaches to track antigen specific T-cell responses during immunotherapy can provide novel insights into mechanisms of tolerance induction in humans and identify new potential treatment targets

    Effector and central memory T helper 2 cells respond differently to peptide immunotherapy

    Get PDF
    Peptide immunotherapy (PIT) offers realistic prospects for the treatment of allergic diseases, including allergic asthma. Much is understood of the behavior of naive T cells in response to PIT. However, treatment of patients with ongoing allergic disease requires detailed understanding of the responses of allergen-experienced T cells. CD62L expression by allergen-experienced T cells corresponds to effector/effector memory (CD62L(lo)) and central memory (CD62L(hi)) subsets, which vary with allergen exposure (e.g., during, or out with, pollen season). The efficacy of PIT on different T helper 2 (Th2) cell memory populations is unknown. We developed a murine model of PIT in allergic airway inflammation (AAI) driven by adoptively transferred, traceable ovalbumin-experienced Th2 cells. PIT effectively suppressed AAI driven by unfractionated Th2 cells. Selective transfer of CD62L(hi) and CD62L(lo) Th2 cells revealed that these two populations behaved differently from one another and from previously characterized (early deletional) responses of naive CD4(+) T cells to PIT. Most notably, allergen-reactive CD62L(lo) Th2 cells were long-lived within the lung after PIT, before allergen challenge, in contrast to CD62L(hi) Th2 cells. Despite this, PIT was most potent against CD62L(lo) Th2 cells in protecting from AAI, impairing their ability to produce Th2 cytokines, whereas this capacity was heightened in PIT-treated CD62L(hi) Th2 cells. We conclude that Th2 cells do not undergo an early deletional form of tolerance after PIT. Moreover, memory Th2 subsets respond differently to PIT. These findings have implications for the clinical translation of PIT in different allergic scenarios
    corecore