18 research outputs found

    Statistical Properties of Cavitons and Spontaneous Hot Flow Anomalies in a Global Hybrid-Vlasov Magnetosphere Simulation

    Get PDF
    The magnetic field of Earth interacts with the supersonic solar wind that emanates from the outer part of the Sun’s atmosphere. The interaction results in the formation of Earth’s magnetosphere with a bow shock and a foreshock upstream of it. Together, they form a complex system that hosts a large number of different phenomena, ranging from aurorae visible with the naked eye from Earth’s surface to magnetic waves and transient structures only observable by spacecraft with in-situ measurements. In addition to spacecraft measurements, numerical simulations performed with computers have become increasingly important in space research with the constantly growing amount of available computing power. The topic of this thesis, two types of transient structures found upstream of the bow shock in the foreshock, cavitons and spontaneous hot flow anomalies (SHFAs), are examples of phenomena that have been discovered and studied with the combination of numerical simulations and spacecraft observations. These transient types are related, as cavitons can evolve into SHFAs. In this thesis, cavitons and SHFAs are studied with the global hybrid-Vlasov simulation Vlasiator. The transients are studied statistically in a global simulation for the first time, granting the largest statistical sample up to date. The approach taken in this study is to track individual transients in time, for which purpose a tracking algorithm was developed as a part of this thesis. With this method, the first detailed investigation of the evolution of cavitons and SHFAs is conducted. The statistical results obtained in this work indicate that cavitons and SHFAs form in a uniform region near the bow shock. There is a distinct distance to the shock within which cavitons can become SHFAs, and it is found that SHFAs can either form independently, or evolve from cavitons. The properties of the transients are found to have some dependence on the transients’ location relative to the bow shock. The propagation velocity of the transients is measured, and is found to agree with prior spacecraft observations

    Magnetosheath jet evolution as a function of lifetime : global hybrid-Vlasov simulations compared to MMS observations

    Get PDF
    Magnetosheath jets are regions of high dynamic pressure, which can traverse from the bow shock towards the magnetopause. Recent modelling efforts, limited to a single jet and a single set of upstream conditions, have provided the first estimations about how the jet parameters behave as a function of position within the magnetosheath. Here we expand the earlier results by doing the first statistical investigation of the jet dimensions and parameters as a function of their lifetime within the magnetosheath. To verify the simulation behaviour, we first identify jets from Magnetosphere Multiscale (MMS) spacecraft data (6142 in total) and confirm the Vlasiator jet general behaviour using statistics of 924 simulated individual jets. We find that the jets in the simulation are in quantitative agreement with the observations, confirming earlier findings related to jets using Vlasiator. The jet density, dynamic pressure, and magnetic field intensity show a sharp jump at the bow shock, which decreases towards the magnetopause. The jets appear compressive and cooler than the magnetosheath at the bow shock, while during their propagation towards the magnetopause they thermalise. Further, the shape of the jets flatten as they progress through the magnetosheath. They are able to maintain their flow velocity and direction within the magnetosheath flow, and they end up preferentially to the side of the magnetosheath behind the quasi-parallel shock. Finally, we find that Vlasiator jets during low solar wind Alfven Mach number M-A are shorter in duration, smaller in their extent, and weaker in terms of dynamic pressure and magnetic field intensity as compared to the jets during high M-A.Peer reviewe

    A global view of Pc3 wave activity in near-Earth space : Results from hybrid-Vlasov simulations

    Get PDF
    Ultra-low frequency (ULF) waves in the Pc3 range, with periods between 10-45 s, are routinely observed in Earth's dayside magnetosphere. They are thought to originate in the foreshock, which extends upstream of the quasi-parallel bow shock and is populated with shock-reflected particles. The foreshock is permeated with ULF waves generated by ion beam instabilities, most notably the "30-s " waves whose periods match those of the Pc3 waves and which are carried earthward by the solar wind flow. However, the global picture of Pc3 wave activity from the foreshock to the magnetosphere and its response to changing solar wind conditions is still poorly understood. In this study, we investigate the global distribution and properties of Pc3 waves across near-Earth space using global simulations performed with the hybrid-Vlasov model Vlasiator. The simulations enable us to study the waves in their global context, and compare their properties in the foreshock, magnetosheath and dayside magnetosphere, for different sets of upstream solar wind conditions. We find that in all three regions the Pc3 wave power peaks at higher frequencies when the interplanetary magnetic field (IMF) strength is larger, consistent with previous studies. The Pc3 wave power is significantly enhanced in all three regions for higher solar wind Alfven Mach number. As this parameter is known to affect the shock properties but has little impact inside the magnetosphere, this brings further support to the magnetospheric waves originating in the foreshock. Other parameters that are found to influence the foreshock wave power are the solar wind density and the IMF cone angle. Inside the magnetosphere, the wave power distribution depends strongly on the IMF orientation, which controls the foreshock position upstream of the bow shock. The wave power is largest when the angle between the IMF and the Sun-Earth line is smallest, suggesting that wave generation and transmission are most efficient in these conditions.Peer reviewe

    Connection Between Foreshock Structures and the Generation of Magnetosheath Jets : Vlasiator Results

    Get PDF
    Earth’s magnetosheath consists of shocked solar wind plasma that has been compressed and slowed down at the Earth’s bow shock. Magnetosheath jets are pulses of enhanced dynamic pressure in the magnetosheath. Jets have been observed by numerous spacecraft missions, but their origin has remained unconfirmed, though several formation mechanisms have been suggested. In this study, we use a method for automatically identifying and tracking jets as well as foreshock compressive structures (FCSs) in four 2D runs of the global hybrid-Vlasov simulation Vlasiator. We find that up to 75% of magnetosheath jets are caused by FCSs impacting the bow shock. These jets propagate deeper into the magnetosheath than the remaining 25% of jets that are not caused by FCSs. We conduct a visual case study of one jet that was not caused by FCSs and find that the bow shock was not rippled before the formation of the jet.Earth's magnetosheath consists of shocked solar wind plasma that has been compressed and slowed down at the Earth's bow shock. Magnetosheath jets are pulses of enhanced dynamic pressure in the magnetosheath. Jets have been observed by numerous spacecraft missions, but their origin has remained unconfirmed, though several formation mechanisms have been suggested. In this study, we use a method for automatically identifying and tracking jets as well as foreshock compressive structures (FCSs) in four 2D runs of the global hybrid-Vlasov simulation Vlasiator. We find that up to 75% of magnetosheath jets are caused by FCSs impacting the bow shock. These jets propagate deeper into the magnetosheath than the remaining 25% of jets that are not caused by FCSs. We conduct a visual case study of one jet that was not caused by FCSs and find that the bow shock was not rippled before the formation of the jet. Plain Language Summary The space around Earth is filled with plasma, the fourth state of matter. Earth's magnetic field shields our planet from the stream of plasma coming from the Sun, the solar wind. The solar wind plasma is slowed down at the Earth's bow shock, before it flows against and around the Earth's magnetic field in the magnetosheath. Sometimes, pulses of high density or velocity can occur in the magnetosheath that have the potential to disturb the inner regions of near-Earth space where many spacecraft orbit. We call these pulses magnetosheath jets. Magnetosheath jets have been observed by many spacecraft over the past few decades, but how they form has remained unclear. In this study, we use the Vlasiator model to simulate plasma in near-Earth space and investigate the origins of magnetosheath jets. We find that the formation of up to 75% of these jets can be explained by compressive structures in the foreshock, a region populated by intense wave activity extending sunward of the quasi-parallel bow shock, where interplanetary magnetic field lines allow shock-reflected particles to travel back toward the Sun.Peer reviewe

    Spatial filtering in a 6D hybrid-Vlasov scheme to alleviate adaptive mesh refinement artifacts : a case study with Vlasiator (versions 5.0, 5.1, and 5.2.1)

    Get PDF
    Numerical simulation models that are used to investigate the near-Earth space plasma environment require sophisticated methods and algorithms as well as high computational power. Vlasiator 5.0 is a hybrid-Vlasov plasma simulation code that is able to perform 6D (3D in ordinary space and 3D in velocity space) simulations using adaptive mesh refinement (AMR). In this work, we describe a side effect of using AMR in Vlasiator 5.0: the heterologous grid approach creates discontinuities due to the different grid resolution levels. These discontinuities cause spurious oscillations in the electromagnetic fields that alter the global results. We present and test a spatial filtering operator for alleviating this artifact without significantly increasing the computational overhead. We demonstrate the operator's use case in large 6D AMR simulations and evaluate its performance with different implementations.Peer reviewe

    Electron Signatures of Reconnection in a Global eVlasiator Simulation

    Get PDF
    Geospace plasma simulations have progressed toward more realistic descriptions of the solar wind-magnetosphere interaction from magnetohydrodynamic to hybrid ion-kinetic, such as the state-of-the-art Vlasiator model. Despite computational advances, electron scales have been out of reach in a global setting. eVlasiator, a novel Vlasiator submodule, shows for the first time how electromagnetic fields driven by global hybrid-ion kinetics influence electrons, resulting in kinetic signatures. We analyze simulated electron distributions associated with reconnection sites and compare them with Magnetospheric Multiscale (MMS) spacecraft observations. Comparison with MMS shows that key electron features, such as reconnection inflows, heated outflows, flat-top distributions, and bidirectional streaming, are in remarkable agreement. Thus, we show that many reconnection-related features can be reproduced despite strongly truncated electron physics and an ion-scale spatial resolution. Ion-scale dynamics and ion-driven magnetic fields are shown to be significantly responsible for the environment that produces electron dynamics observed by spacecraft in near-Earth plasmas.Peer reviewe

    Enabling technology for global 3D + 3V hybrid-Vlasov simulations of near-Earth space

    Get PDF
    We present methods and algorithms that allow the Vlasiator code to run global, three-dimensional hybrid-Vlasov simulations of Earth's entire magnetosphere. The key ingredients that make Vlasov simulations at magnetospheric scales possible are the sparse velocity space implementation and spatial adaptive mesh refinement. We outline the algorithmic improvement of the semi-Lagrangian solver for six-dimensional phase space quantities, discuss the coupling of Vlasov and Maxwell equations' solvers in a refined mesh, and provide performance figures from simulation test runs that demonstrate the scalability of this simulation system to full magnetospheric runs.Peer reviewe

    Magnetospheric responses to solar wind Pc5 density fluctuations : Results from 2D hybrid Vlasov simulation

    Get PDF
    Ultra-low frequency (ULF) waves are routinely observed in Earth's dayside magnetosphere. Here we investigate the influence of externally-driven density variations in the near-Earth space in the ULF regime using global 2D simulations performed with the hybrid-Vlasov model Vlasiator. With the new time-varying boundary setup, we introduce a monochromatic Pc5 range periodic density variation in the solar wind. A breathing motion of the magnetopause and changes in the bow shock standoff position are caused by the density variation, the time lag between which is found to be consistent with propagation at fast magnetohydrodynamic speed. The oscillations also create large-scale stripes of variations in the magnetosheath and modulate the mirror and electromagnetic ion cyclotron modes. We characterize the spatial-temporal properties of ULF waves at different phases of the variation. Less prominent EMIC and mirror mode wave activities near the center of magnetosheath are observed with decreasing upstream Mach number. The EMIC wave occurrence is strongly related to pressure anisotropy and beta(||), both vary as a function of the upstream conditions, whereas the mirror mode occurrence is highly influenced by fast waves generated from upstream density variations.Peer reviewe
    corecore