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ABSTRACT

We present methods and algorithms that allow the Vlasiator code to run global, three-dimensional hybrid-Vlasov simulations of Earth’s
entire magnetosphere. The key ingredients that make Vlasov simulations at magnetospheric scales possible are the sparse velocity space
implementation and spatial adaptive mesh refinement. We outline the algorithmic improvement of the semi-Lagrangian solver for six-
dimensional phase space quantities, discuss the coupling of Vlasov and Maxwell equations’ solvers in a refined mesh, and provide perfor-
mance figures from simulation test runs that demonstrate the scalability of this simulation system to full magnetospheric runs.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0134387

I. INTRODUCTION

Vlasiator is a hybrid-Vlasov space plasma simulation system, spe-
cifically designed to perform kinetic simulations of the near-Earth
environment.1 Its goal has been to use it to perform global, three-
dimensional simulations of Earth’s magnetosphere and its interaction
with the solar wind without a fixed prescription of the shape of the
particles’ velocity distribution function [as would be the case in mag-
netohydrodynamics (MHD)]. Being an implementation of a hybrid
kinetic method, Vlasiator simulates the phase-space evolution of ion
species by propagating the phase space density on a Cartesian grid,
modeling ions as a distribution function in six (three spatial and three
velocity) dimensions. Electrons are treated in an indirect way, their
effective physical action reduced to charge neutralization, Hall cur-
rents, and contributions to Ohm’s law via the electron pressure gradi-
ent.2 In Vlasiator’s numerical implementation, the deliberate choice of
a Eulerian representation of phase space, instead of the common
approach of a particle-in-cell (PIC) approximation,3 means that the
simulations are computationally very heavy, typically exceeding mil-
lions of CPU-hours for a few tens of minutes of simulated physical
time. On the other hand, this choice enables simulation results that are

unencumbered by stochastic particle sampling noise that is inherent to
the PIC simulation approach. In the end, high-resolution PIC simula-
tions typically end up using particle counts that are roughly equivalent
(n � 1012) to Vlasiator’s phase space grid point numbers.4

Vlasiator has been employed to study Earth’s foreshock,5–12 mag-
netosheath waves,13,14 magnetosheath jets,15–17 dayside magnetopause
magnetic reconnection,18–20 transient foreshocks,21 magnetotail recon-
nection site locations,22,23 fast magnetotail flows,24 magnetotail current
sheet flapping,25 and ionospheric precipitation.26,27 In addition, Refs.
28 and 29 presented simulations, in which full electrostatic Vlasov
simulations including kinetic electrons were run. Common to all pre-
vious publications was a limitation to two spatial dimensions: For rea-
sons of computational complexity and cost, the simulation runs were
chosen to operate in spatially two-dimensional cuts through the
Earth’s magnetosphere, along the equatorial plane (for foreshock and
magnetosheath studies) or the noon-midnight meridional plane (for
studies of dayside- and tail reconnection, among others). The
dimension perpendicular to this plane extended only a single
simulation cell in thickness, with periodic boundary conditions. Their
magnetic field had to be modeled as a line dipole, which prevented

Phys. Plasmas 30, 042902 (2023); doi: 10.1063/5.0134387 30, 042902-1

VC Author(s) 2023

Physics of Plasmas ARTICLE scitation.org/journal/php

D
ow

nloaded from
 http://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/5.0134387/16832177/042902_1_5.0134387.pdf

https://doi.org/10.1063/5.0134387
https://doi.org/10.1063/5.0134387
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0134387
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0134387&domain=pdf&date_stamp=2023-04-13
https://orcid.org/0000-0003-0872-1761
https://orcid.org/0000-0002-5813-6539
https://orcid.org/0000-0001-7055-551X
https://orcid.org/0000-0001-5793-7070
https://orcid.org/0000-0002-3307-6015
https://orcid.org/0000-0001-9762-6795
https://orcid.org/0000-0002-5095-4609
https://orcid.org/0000-0001-5515-1998
https://orcid.org/0000-0002-1655-4601
https://orcid.org/0000-0002-3715-4623
https://orcid.org/0000-0002-2687-7287
https://orcid.org/0000-0002-6373-9756
https://orcid.org/0000-0002-0759-2964
https://orcid.org/0000-0002-3369-4761
https://orcid.org/0000-0001-7350-1509
https://orcid.org/0000-0002-5978-6955
https://orcid.org/0000-0002-7576-3251
https://orcid.org/0000-0003-4571-4501
https://orcid.org/0000-0003-4857-1227
mailto:urs.ganse@helsinki.fi
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/5.0134387
https://scitation.org/journal/php


fully realistic mapping of inner magnetosphere locations to iono-
spheric altitudes.

A notable exception is given by Ref. 30, where the simulation
setup was a slab of finite extent, to provide a third spatial dimension
on a limited scale (but large enough to comfortably exceed ion scales),
so that the local kinetic behavior of dayside magnetopause reconnec-
tion could be studied without limitation of strict two-dimensionality.
Yet, the overall geometry of the simulation domains, and thus the
magnetic topology and physical degrees of freedom, remained essen-
tially two-dimensional, so that a comprehensive validation of physical
results was required in each of the aforementioned studies, to ensure
that their outcomes were not negatively affected by the limitation to
two spatial dimensions.

Thanks to recent algorithmic improvements to the code, these
limitations have been overcome, fulfilling the original goal outlined in
Ref. 31. In the present paper, we describe the technological and con-
ceptual evolution of the Vlasiator code that reduces the computational
overhead to a degree that global simulations in full three spatial
dimensions (plus three velocity dimensions) have become possible.
Scientific results from the first 3Dþ 3V global hybrid-Vlasov simula-
tion of Earth’s magnetosphere performed with the methods presented
here will be presented in an upcoming publication.

The structure of this publication is such that the remainder of
Sec. I outlines the length- and timescales that magnetospheric hybrid-
kinetic simulations need to resolve and how these resolution require-
ments lead to difficult computational demands. Section II describes
Vlasiator’s data structures and solvers, with a special focus on the
recent developments that enable the combination of spatial adaptive
mesh refinement and sparse velocity space structure. Section III, then,
presents verification test cases, which show the capabilities of the new
solvers. Discussion and outlook toward future developments are pre-
sented in Sec. IV.

A. Spatiotemporal scales and computational
requirements

As the goal of Vlasiator is to perform hybrid-kinetic simulations
of the whole magnetospheric domain, the involved spatiotemporal
scales place stringent requirements on the grid resolution and size.
Kinetic electron dynamics are neglected in the hybrid approach, so
characteristic length scales of interest are dictated by ion kinetic effects.
They include, at the small end, the ion inertial length (whose value in
the solar wind, for example, is di ¼ c=xi � 230 km, where c is the
speed of light, and xi is the ion plasma frequency). Wavelengths of
mirror modes and electromagnetic ion cyclotron (EMIC) waves in the
magnetosheath are kM � 300 km.13,14 The Larmor radius rL ¼ mv

qB

provides yet another kinetic length scale that varies strongly through-
out the magnetospheric domain (from rL � 1500 km in the solar wind
to tens of kilometers in the cusp regions).

In addition to these smallest length scales that need to be
resolved, the minimum outer system size of the simulation domain is
dictated by the extents of the magnetospheric flow and current sys-
tems. With the simulation domain, shaped as a rectangular cuboid
box in the GSM (geocentric-solar-magnetospheric) coordinate system,
the bow shock standoff distance at x � 12 Earth Radii ðREÞ32 provides
a minimum bound for the Sunward direction. If the simulation is
expected to generate a foreshock extending toward the Sun, the box

must be extended to contain the majority of generated foreshock wave
power. In the opposite direction, the magnetotail extends far in �x.
The whole tail, however, cannot be encompassed in the simulation
domain, so the constraint is to include the plasma domain relevant to
and driving the features of interest. We have chosen tailward simula-
tion domain extents down to x � �100 RE (in contrast to much lon-
ger tails in MHD simulations, such as Ref. 33), allowing simulation
data to be directly compared to spacecraft data from the ARTEMIS
mission.34

In the two remaining spatial dimensions, the system size is deter-
mined by the bow shock shape: The box needs to be large enough to
contain a significant part of the shock surface. Downstream from loca-
tions where the shock surface is allowed to intersect the box, the pres-
sure balance has proven to be unreliable, which can negatively influence
the model’s physical validity. In Vlasiator global runs, the extents are,
thus, typically chosen to range from y; z � ½�60; 60�RE to provide gen-
erous leeway away from the innermagnetosphere andmagnetotail.

In near-Earth space, the velocity space extents are dictated by the
typical bulk velocity of the solar wind and non-thermal velocity struc-
tures (such as non-relativistic particle beams accelerated at the bow
shock or by magnetic reconnection). Satellite observations and
previous simulation runs6,35 motivate velocity limits of vx; vy; vz
2 ½�4000; 4000� km=s under regular solar wind conditions. For the
velocity space resolution, i.e., the size of a velocity space cell, a system-
atic study by Pfau-Kempf et al.36 found that Dv � 40 km=s yields rea-
sonable results for the physical processes relevant to magnetospheric
simulations.

Given the resolution and spatial extent requirements discussed
above, Table I tabulates the amount of grid points that the phase space
needs to comprise in each of its six dimensions. From the table, we
conclude that a fully resolved simulation would require a total of Nr

¼ nx � ny � nz ¼ 38223 ¼ 4:5� 108 3D simulation cells, each of
which contain a velocity space of Nv ¼ nvx � nvy � nvz ¼ 2003 ¼ 8
�106 velocity space cells. In a na€ıve approach to uniform grid discreti-
zation, the 6D phase space would, thus, contain Nc ¼ Nr � Nv ¼ 3:5
�1015 phase space cells, which leads to a memory requirement of
about 72 exabytes. Obviously, this is far beyond anything a computing
facility can be expected to provide in the foreseeable future.

The key strategy hitherto employed in Vlasiator to achieve a sig-
nificant reduction of computational complexity is the sparse velocity
space representation.37 It makes use of the observed property of
plasma velocity distribution functions in near-Earth space tend to be
compactly localized in the velocity domain. Very often, high phase
space densities are present in (near) Maxwellian core populations
around the bulk velocity, sometimes with beam distributions clearly
separated from the thermal core. Long tails of the distribution, such as
power-law or kappa distribution functions, are present and important
for high-energy particle transport studies, but their overall kinematic
impact on global plasma dynamics is small compared to the bulk and
beam structures. Large volumes of the velocity space are filled with
phase space density values that are many orders of magnitude lower
than the dynamically relevant peaks. Vlasiator deliberately discards
those parts and stores and processes only the parts of velocity space in
which the phase space density exceeds a set threshold value fmin. In
magnetospheric setups, we found that a sparsity threshold value of
fmin ¼ 10�15 s3=m6 led to a 98% reduction in modeled phase space
volume,36 while resulting in an overall mass loss of <1%. This directly
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translates to a 98% reduction in computational requirements, which
made the spatially 2D Vlasiator simulations and scientific studies pos-
sible. This threshold value was also empirically found to retain fore-
shock beam distributions, thus leaving ion-kinetic beam instabilities in
the foreshock intact.9 For a more detailed description of the sparse
velocity space mechanism, see Refs. 37 and 1.

However, this mechanism alone is not sufficient to make
3Dþ 3V global magnetospheric simulations feasible, as the memory
requirement for the simulation data would still be of the order of (tens
of) exabytes. To enable spatially 3D simulations, a further reduction in
computational intensity is required. A common approach, especially
in magnetohydrodynamic (MHD) modeling,33,38,39 is to change
the spatial grid structure to be non-uniformly discretized. Typically, a
distinction is made between adaptive mesh refinement (AMR)
approaches and unstructured sparse grids.

In an AMR setup, the simulation domain is initially discretized
on a coarse Cartesian base mesh. The mesh resolution in certain areas
of the domain is successively doubled by splitting simulation cells into
smaller subcells. Thus, parts of the domain have double mesh resolu-
tion, parts have quadruple resolution, etc.

The choice for when to refine must be made judiciously based on
the problem at hand: In some cases, the refinement will be made based
on predefined geometric constraints (such as the choice of higher reso-
lution for certain areas of interest). More generally, however, the adap-
tivity of the refinement process is expressed through a run-time
evaluated refinement criterion. This refinement criterion continuously
reevaluates whether any given simulation cell should be coarser or
finer than it is at the moment.

A simulation code that employs a refined mesh needs to be
designed such that it can operate on different grid resolutions and
especially handle situations at refinement interfaces, where simulation
cells have multiple neighbors of higher or lower resolution in one or
multiple directions. Section II describes the details of how Vlasiator’s
solvers have been adapted and optimized for this task. Using these
optimizations, the amount of simulation cells for a global 3Dþ 3V
Vlasiator simulation is reduced to Nc � 1:3� 1012 cells, leading to a
total memory requirement of 33.7 terabytes, which is well within the
capabilities of modern supercomputers.

Section II details the design choices and algorithmic changes to
the Vlasiator data structures and solvers that make computationally
efficient 3Dþ 3V simulations with a refined mesh geometry possible.

II. METHODS
A. The grid structure

Vlasiator’s basic simulation grid is based on the distributed
Cartesian cell-refinable grid (DCCRG) library,40 which provides

memory layout, mesh geometry, and refinement and a parallel mes-
sage passing interface (MPI) communication framework.41

The DCCRG framework enables adaptive mesh refinement at
arbitrary locations of a Cartesian simulation domain, by splitting a
cubic simulation cell into eight cubic subcells with twice the spatial res-
olution (due to its choice of solvers, Vlasiator currently requires exactly
cubical cells). This refinement process can be iterated multiple times.
The domain decomposition is neither tree nor patch based,42,43 as
every cell can be individually refined or unrefined without any cooper-
ation of its local neighborhood (with the limitation that only one jump
of refinement level is allowed at a time, and refinement interfaces need
to be separated by at least two cells). As a result, the refinement
domains can be freely located and the refinement interfaces can have
arbitrary shapes. The solvers operating on that domain need to, there-
fore, be able to handle changes of refinement level on a cell-by-cell
basis.

The current refinement strategy for Vlasiator global simulations
is based on regions of interest. These regions are identified in a low-
resolution run (and/or using estimates by well-established empirical
relations for the bow shock and magnetopause positions,44) and are,
thereby, predefined for the high-resolution simulation. Figure 1 shows
an example of the mesh refinement geometry employed in such a situ-
ation. For future runs, however, dynamic refinement criteria are being
investigated, based on local physical parameters and their gradients, as
is commonly done in global MHD simulations (e.g., Ref. 33).

TABLE I. Listing of typical simulation extent and resolution requirements for global kinetic magnetospheric simulations in all six spatial and velocity dimensions. A straightforward
Cartesian grid without refinement would lead to unfeasible simulation cell counts.

Dim. (GSM) Physical extent L Resolution requirement Dl Required cell count n

x ½�100; 20�RE 1000 km ð0:156REÞ 3822
y ½�60; 60�RE 1000 km ð0:156REÞ 3822
z ½�60; 60�RE 1000 km ð0:156REÞ 3822
vx; vy; vz ½�4000; 4000� km=s 40 km=s 200

FIG. 1. Snapshot of a Vlasiator global magnetospheric simulation, showing the
plasma density color-coded. The adaptive mesh refinement (AMR) is visible in the
large contrast of cell sizes between the inflowing solar wind (coarsest cells) and the
magnetotail (finest cells). In this simulation, refinement regions are predefined
through simple geometric primitives.
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While the DCCRG grid of Vlasiator stores the phase space den-
sity data as solved by the Vlasov equation, the electromagnetic fields
are not discretized on the same mesh. They are propagated with a
finite difference upwind field solver,45 which stores its data on a simple
uniform Cartesian array grid.46 This grid does not employ mesh
refinement (as the field solver does not need it), but is discretized at a
constant resolution matching the finest AMR refinement level of the
DCCRG grid.

As the computational demands of these simulations require run-
ning on large distributed-memory systems, both the Vlasov and field
solver grids use a spatial domain decomposition approach. The
strongly varying computational complexity of the sparse velocity space
and AMR implementations makes it necessary for the Vlasov solver
grid to dynamically rebalance the load of its decomposition domains.
A combined action by the DCCRG grid and the Zoltan library47 takes
care of this process. The field solver, on the other hand, has a constant
computational load per simulation cell, so that a simple MPI Cartesian
communicator is used for initial grid partition; no rebalancing is
required during run time.

This multi-mesh structure is referred to as heterologous domain
decomposition. The intricacies of coupling between these two grids are
discussed in a recent publication.48

B. The 6D Vlasov solver

At the heart of the numerical implementation of Vlasiator lies
the phase space distribution function fsð~x;~v; tÞ for an ion species s
(with charge qs and mass ms). Its dynamic evolution in interaction
with the electromagnetic fields ~E and ~B is described by the Vlasov
equation,49

@fs
@t
þ~v � @fs

@~x
þ qs
ms

~E þ~v �~Bð Þ � @fs
@~v
¼ 0: (1)

This equation corresponds to the Boltzmann equation without colli-
sions and the assumption that the only external force is given by the
Lorentz force. Note that Vlasov’s equation can be viewed as a multidi-
mensional advection equation without any source terms.

Vlasiator directly solves Vlasov’s equation and propagates the ion
phase space density using a semi-Lagrangian solver based on the
SLICE-3D method,50 which was originally designed to solve hydrody-
namic equations on a spherical surface. The six phase space dimen-
sions (three real-space, and three velocity space dimensions,
“3Dþ 3V”) are treated independently, by reordering Eq. (1) as two
3D advection equation in position (velocity), with the velocity (spatial)
derivative forming the source term on the right hand side,

@fs
@t
þ~v � @fs

@~x
¼ � qs

ms

~E þ~v �~Bð Þ � @fs
@~v
; (2)

@fs
@t
þ qs
ms

~E þ~v �~Bð Þ � @fs
@~v
¼ �~v � @fs

@~x
: (3)

This approach treats spatial transport (in real space) and acceleration
of the distribution function (in velocity space) in separate solver steps
that are performed consecutively. In the following deliberations, they
are, respectively, referred to as the translation and the acceleration
steps. Formally, this corresponds to a Strang-splitting approach to
solving the Vlasov equation as a 6D hyperbolic conservation law.51,52

As the near-Earth plasmas modeled by Vlasiator are in good
approximation non-relativistic, relativistic effects are neglected in the
implementation. This has several benefits for the semi-Lagrangian
structure of the translation step: Transport in all three spatial dimen-
sions can be treated independently, as Newtonian kinematics does not
introduce a Lorentz factor of relativistic kinematics. For each dimen-
sion, transport in the ðxi; vxiÞ subspace, hence, forms a linear shear of
the distribution, as illustrated in Fig. 2.

In a similar way, certain properties of the Lorentz force acting on
the plasma medium allow the acceleration step to be simplified. In the
nonrelativistic Vlasov equation, the action of the Lorentz force ~F l

¼ qsð~v �~B þ~EÞ transforms the phase space distribution inside one
simulation time step Dt like a solid rotator in velocity space: The mag-
netic field causes a gyration of the distribution function by the Larmor
motion D~v ¼ @~v=@tDt ¼ qs

ms
ð~v �~B þ~EÞDt. Any non-zero electric

field accelerates electrically charged matter, which is a simple linear
shift of velocity space.

Hence, the overall velocity space transformation is a rotation,
whose axis direction matches the local magnetic field vector. The gyra-
tion center velocity is given by the convective plasma velocity
~E �~B=B2. This transformation can be decomposed into three consec-
utive shear motions53,54 along the coordinate axes, thus repeating the
same fundamental algorithmic structure as the spatial translation
update. The acceleration update affects the velocity space locally within
each spatial simulation cell, so its properties are unaffected by the
introduction of spatial AMR. This paper will, hence, focus on the
changes to the translation solver step.

Iterating through the storage data structure of Vlasiator’s sparse
phase space has a high numerical complexity. In contrast, the access
patterns of the solver are predictable and linear: The semi-Lagrangian
solver performs the shear transformation in-order, in one dimension
at a time. To benefit from this, phase space data are organized into a
so-called pencil structure at the beginning of each solver step, in which
spatially adjacent data, in one Cartesian direction at a time, are stored
linearly in memory. These pencils share no data dependencies during
the shear and can be processed in parallel.

In a refined mesh, construction of these pencils carries an addi-
tional complication, since neighboring cells at the mesh refinement
boundaries can have different sizes. The algorithm performs the fol-
lowing steps for every spatial update direction (as illustrated in Fig. 2):

(1) Find pencil seed cells
The goal is to build pencils of spatially adjacent cells. This pro-
cess starts with the seed cells at one boundary of the domain.
These are all cells that do not contain a local neighbor in the
backwards direction of the chosen coordinate.

(2) Pencil construction
The pencil is built by identifying the neighbors of the seed cell
in the positive coordinate direction and appending them to the
pencil data structure. This process continues until no further
neighbor cells are found (either at the opposite simulation
boundary, or the edge of the local MPI domain).

(3) Pencil splitting
When a refinement interface is encountered in this process, the
next neighbors are four cells at higher mesh resolution. Here,
the existing pencil structure is stopped, and four new separate
pencils continue. To minimize the amount of data movement,
the split pencils also contain cells from the coarser domain
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corresponding to the semi-Lagrangian update’s stencil size (two
cells in common simulation runs). This process advances recur-
sively across any further refinement interface.
In the case where a refined pencil encounters a re-coarsening of
the mesh, the pencil construction stops, again taking padding
by the stencil size into account. A new seed point (and hence, a
new pencil) is started to continue at the coarser level.

(4) Result merging and remote neighbor contributions
Even a completed pencil still has a mass outflow toward a fur-
ther neighbor cell. This can, in many cases, mean that a bound-
ary of the spatial decomposition over parallel processes was
encountered, and a remote neighbor cell exists, into which the
transported phase space density flows. This is called the remote
neighbor contribution of the pencil.
In situations where the end of the pencil coincides with a coarsen-
ing refinement interface, four pencils will feed their remote neigh-
bor contribution into the same target cell, so the target cell provides
a target buffer for up to four incoming phase space density values,
which are summed after the transport step is completed.

Once the complete set of pencils has been constructed, meaning
that the whole 3D space is organized into pencil structures, the next
step of the solver acts on one phase space cell at a time, interpolating
the discrete phase space values of the pencils by a reconstruction poly-
nomial (depicted as the red curve in Fig. 2). The phase space integral
values of each cell are taken as control points for a polynomial using
the nonuniform piecewise parabolic reconstruction method of Ref. 55.
A slope limiter is used at this point, to ensure the total variation dimin-
ishing (TVD) property of the overall solver step.

The reconstructed polynomial gets shifted in phase space to per-
form the actual phase space transport. The distance of this shift for a
translation update is given by

Dxi ¼ vi Dt; (4)

where the velocity vi is constant for the whole pencil.
In the acceleration update, the shift in velocity,

Dvi ¼ ai Dt; (5)

is determined by the acceleration characteristic ai from the Lorentz
force.

The shifted polynomial is integrated over the target cell extent to
obtain updated phase space density values. These are transferred back
from the pencil structure into the phase space grid data structure.

This entire process gets repeated for all three spatial dimensions,
leading to an effective three-dimensional spatial transport step. As a
performance optimization, the pencilization process is only performed
once and its metadata are retained until the MPI load balances change
the spatial decomposition of the simulation domain.

C. Coupling between Vlasov and field solver

To complete the description of a plasma system in the hybrid-
kinetic regime, the Vlasov equation [Eq. (1)] is solved together with
Maxwell’s equations in the Darwin approximation.1 The electric field
~E and magnetic field~B act on the distribution functions, and in return,
statistical moments of the particle distribution functions (overall mass
density qm, charge density qq, bulk velocity ~V , and pressure tensor~~P )
are fed into the field solver. Hence, data need to be exchanged between
the two equations’ solver procedures.48

As Vlasiator’s field solver and Vlasov solver operate on separate
grids, they both require a coupling process during each simulation
time step, to be used as source terms for each other’s update. The asso-
ciation between the two grids is calculated at initialization time and
updated after any load balancing step. Reference 48 presents an in-
depth discussion of details of the coupling procedure between the two
meshes, including the spatial filtering step employed to smooth out
discontinuities in areas of resolution mismatch.

D. Boundary conditions

Vlasiator offers a selection of boundary conditions to handle dif-
ferent simulation scenarios, described in detail in Ref. 1 Inflowing
boundary conditions enable solar wind to enter the simulation, with
arbitrary time-varying plasma conditions.56 Periodic boundary condi-
tions are used to enable simulation in one and two spatial dimensions,
and outflow boundary conditions are used to enable plasma and

FIG. 2. Illustration of the elementary semi-
Lagrangian shear step that underlies the
Vlasiator Vlasov solver. Panel (a) shows
the example of a 1Dþ 1D real space/
velocity space cut through the simulation
domain, as it shears during a translation
update. Panel (b) presents how phase
space density information from adjacent
cells in the update direction is extracted
into a linear pencil array. This pencil is
split to match its finest resolution cells in
panel (c). An interpolating polynomial is
reconstructed through the phase space
density control points at cell centers,
shown in panel (d). This polynomial is
advected, and the resulting target phase
space values are integrated over the vol-
ume of the pencil intersecting the cell and
written back into the phase space data
structure.
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FIG. 3. Accuracy of translation method with square, sinusoidal, and triangular density modulations. In panels (a)–(c), they were propagated over a partially refined periodic sim-
ulation domain. Panels (d) and (e) present the behavior of the same triangular modulation in a fully refined and completely unrefined mesh, for comparison. The original signal
is shown in black, and the signal after propagation is shown in blue (having traveled once around the periodic boundaries), red (ten crossing times), and green (50 crossing
times). Vertical lines indicate the simulation resolution.
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electromagnetic fields to exit the simulation domain. Outflowing
boundary conditions are implemented as homogeneous Neumann
boundaries, essentially copying the values from the neighboring simu-
lation cells. The inner boundary of the magnetospheric setup is termi-
nated by an ionospheric shell, set at about 4:7RE and modeled as a
perfect conductor. The ionospheric boundary cells’ phase space den-
sity is initialized with a Maxwellian distribution and remains constant
throughout the run. The electric field at the ionosphere is set to zero,
and the magnetic field component is initialized with values corre-
sponding to the Earth dipole at those locations.

III. RESULTS

Section III presents a number of validation test runs, in which the
performance of the Vlasov solver has been tested. Full discussion and
in-depth analysis of the physical properties of our large-scale 3D mag-
netospheric simulations are subject of an upcoming publication.

A. Performance of the semi-Lagrangian solver

To ensure that the propagation algorithm performs well across
simulation refinement interfaces, three tailored simulations were per-
formed, where a test distribution was propagated in a periodic box
with a size of 20� 1� 1 cells at coarsest refinement level. In these
tests, the semi-Lagrangian solver was run in isolation from the rest of
the simulation system (especially without any interaction of the field
solver). A monoenergetic plasma (moving at constant velocity v) with
a spatial density modulation of square, sinusoidal, or triangular form
was initialized in the center of the domain, with two levels of mesh
refinement implemented in the same region. A fixed time step Dt
¼ 0:8 Dx

v (corresponding to a spatial Courant–Friedrichs–Lewy (CFL)
value of 0.8 at the finest refinement level) was used. In 100 simulation

time steps, the density modulation propagates once around the boxes’
periodic boundaries and arrives at its starting position. Figures
3(a)–3(c) show the spatial profiles for all three signals at the start of
the simulation, after 100, 1000, and 5000 time steps (corresponding to
1, 10, and 50 complete transitions of the simulation box). In panels (d)
and (e), the triangular setup has been repeated with a uniform grid dis-
cretization at the highest and lowest resolution level, respectively.

It is apparent that the use of slope limiters caused some diffusion,
but overall the signals are conserved adequately. In particular, there
are no distortions or artifacts created at the interfaces between refine-
ment regions. Comparison of the mesh-refined triangle run [panel (c)]
with the high- and low-resolution uniform mesh runs [panels (d) and
(e)] shows that the AMR mechanism does not add any extra diffusiv-
ity, and its effective diffusive behavior lies between the high- and low-
resolution case. The small asymmetries visible in the final result stem
from the selected propagation direction (þx) and were mirrored when
the tests where repeated in the opposite flow direction. These asymme-
tries stem from the applied parabolic polynomial fitting method that
uses four data points, which cannot be selected around the source cell
in a symmetric fashion.

B. Speedup and computational effort

As a benchmark problem for realistic plasma simulations, a
shock-in-a-box test was run, in which an elongated rectangular
simulation domain (with a size of Lx ¼ 3:2� 104 km; Ly; and
Lz ¼ 2� 102 km) is initially filled with two plasma regions that corre-
spond to the Rankine–Hugoniot conditions of an interplanetary shock
in the de Hoffmann–Teller frame.57,58 These simulations have a simi-
lar setup as employed in Ref. 36, with the important distinction that
they are fully three-dimensional meshes. Figure 4 shows the

FIG. 4. Setup and results of shock-in-a-box simulations used for computational scaling tests. Panel (a) shows the initial simulation state: The box is an elongated rectangle,
inside which a standing shock wave is initialized. Panel (b) presents the situation after t ¼ 100 s. A foreshock has formed and kinetic effects breaking the Rankine–Hugoniot
conditions have shifted the position of the shock. Panel (c) outlines a 1D cut through the mesh geometry (showing the simulation cells) and density profile at t ¼ 0 s (black)
and t ¼ 100 s (red) of simulation run AMR-18. In panel (d), the same information is presented for the unrefined run low-1.
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simulation box, mesh refinement structure, and resulting density pro-
files, and Ref. 59 contains full simulation configuration and output
files.

The parameters are chosen such that the shock has zero velocity
in the simulation frame and remains quasi-stationary in the central
region of the box. Note that in the short simulation time frame, com-
plex 3D shock dynamics do not have time to form. The ion inertial
length is c=xpi ¼ 223 km upstream and 148 km downstream of the
shock. Table II compares five different runs of this scenario. In the
“low-1” run, the simulation was discretized with a unrefined mesh of
160� 10� 10 cells in size (yielding a spatial resolution of
Dx ¼ 200 km). For “med-8” and “high-64,” this was increased to
320� 20� 20 cells (Dx ¼ 100 km) and 640� 40� 40 cells
(Dx ¼ 50 km), respectively, so these three simulations provide a weak-
scaling set of the solver implementation without AMR.

The results were obtained on the “Vorna” cluster at the
University of Helsinki, consisting of 180 nodes with Intel Xeon
E5–2670 CPUs at 2.60GHz and an InfiniBand QDR interconnect.

Simulation “AMR-18” from Table II was set up with the same
low base resolution as “low-1,” but the central part of the domain
(x 2 ½�4� 106; 4� 106�m) underwent two levels of mesh refine-
ment, giving that region the same effective 50 km resolution as
“high-64.” Furthermore, simulation “eqv-18” was initialized
with 416� 26� 26 uniform cells resulting in a spatial cell count
(281 216) close to what the AMR run achieved (296 000), which
yielded a uniform resolution of Dx ¼ 76:92 km throughout the box.

The simulation time step Dt was determined from the advection
CFL condition. As this value depends on the size of spatial cells, each
run had to perform a different amount of time steps in order to reach
the simulation target time of 100 s.

As the figures in the table show, the AMR simulations’ amount
of simulation cells Nc lies far below that of “high-64” and its mem-
ory consumption and total computation resource use are reduced
accordingly. As the AMR solver pencilization process is more complex
than that in the unrefined case, the effective computational effort per
phase-space cell, here expressed as twall � NCPU=ðNf � NtstepsÞ (ls), is
noticeably higher. This can also directly be inferred from comparing
the resources spent by “AMR-18” and “eqv-18.” The increased
computational complexity of the AMR solver, however, is offset by the
increase in effective physical phase space volume per computational
unit, so that AMR Vlasov simulations clearly outperform unrefined
setups in terms of overall computational effort per physical volume or
conversely allow for a much finer resolution at the physically relevant
regions at the same computational cost.

C. Global magnetospheric simulations

Finally, the scientific use case for adaptive mesh refinement in
Vlasiator is the study of global, three-dimensional hybrid kinetic simu-
lations of Earth’s entire magnetosphere.

Figures 1 and 5 present different visualizations of the mesh
refinement structure currently employed in Vlasiator global runs. This
run modeled the plasma around Earth, in a box extending in
geocentric solar ecliptic (GSE) coordinates x 2 ½�110; 50�;RE; y;
z 2 ½�57; 57�RE, with an incoming, steady solar wind density of
nSW ¼ 106 m�3, flowing at a speed of vSW ¼ 750 km=s in the – x
direction. The solar wind carried an interplanetary magnetic field of
Bz ¼ �5 nT in the purely southward direction, resulting in spatially
well-known positions for the day- and nightside reconnection regions.
The simulation’s spatial grid had a coarsest resolution level of Dx
¼ 8000 km with three subsequent levels of refinement, yielding a finest
resolution of Dx ¼ 1000 km. The refinement regions were chosen to
give maximum resolution coverage for the dayside magnetopause and
tail reconnection regions. Note that the ion inertial length c=xpi

� 230 km in this simulation is smaller than even the finest grid resolu-
tion. This was likewise the case in previous publications,14,30,36 which
have nonetheless provided valuable insights into physics of the magne-
tosphere, that would be hard to obtain using other simulation meth-
ods. As this manuscript focusses on the implementation details of
adaptive mesh refinement, the inclined reader is referred to Ref. 61,
which presents a recent study further quantifying the physical fidelity
of Vlasiator simulations at low resolution and presenting a subgrid
method to mitigate some of its effects.

In Fig. 5, the blue line provides an analytic estimate of the magne-
topause location using the model of Ref. 44 calculated from the solar
wind parameters of the simulation. The magnetospheric geometry that
has self-consistently developed in the simulation matches this predic-
tion quite well, but the magnetopause standoff distance appears to
mismatch by about 2 RE. The authors of Ref. 62, however, have argued
that the model by Ref. 44 overestimates the radial distance by about
1 RE, an effect that is most likely even more exacerbated by the fact
that this simulation has an unusually high solar wind temperature of
T ¼ 0:5MK, leading to an enhanced thermal pressure in the magne-
tosheath and somewhat stronger compression of the magnetosphere,
resulting in a smaller magnetopause standoff distance. Most impor-
tantly, the simulation shows no sudden discontinuity or departure
from the prediction in different refinement regions.

The green line in Fig. 5 presents the analytic bow shock location
model by Ref. 32. It again shows that the Vlasiator bow shock geome-
try matches well with observational behavior. Some departure from

TABLE II. Memory usage and wall time requirement of shock-in-a-box simulation test runs. Nc is the number of spatial cells, and Nf is the overall number of phase space cells
in the simulation. “Mem” denotes the simulations’ total resident memory as measured by the PAPI library.60 The wall time twall and the core count NCPU provide the total computa-
tional resource use CPUh. All simulations ran for tphys ¼ 100 s using different numbers of simulation steps Nsteps. The efficiency parameter Eff ¼ twall � NCPU=ðNf � NtstepsÞ
denotes the processing time spent per step per phase-space cell.

Run Nc Nf Dx (km) NCPU Mem (GB) twall (s) CPUh Ntsteps Eff (ls)

low-1 16 000 1:1� 109 200 32 15.74 5500 48.9 495 0.33
med-8 128 000 7:7� 109 100 256 182.7 12883 916 989 0.43
high-64 1 024 000 6:1� 1010 50 2048 1545.9 31695 18030 1978 0.53
AMR-18 296 000 1:8� 1010 50–200 608 524.9 28955 4890 1758 0.55
eqv-18 281 216 1:7� 1010 76.92 608 429.5 17548 2963 1286 0.49
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the ideal parabolic shape of the model is visible, but this is likely due to
kinetic effects of the cusps and transient magnetosheath phenomena,
as previously presented in Refs. 19 and 21, and stays within the confi-
dence range given in Ref. 32.

Direct performance comparison with a high-resolution 2D
Vlasiator production run using the Vlasiator solver without AMR was
performed on the Mahti supercomputer at the CSC—Center for
Scientific Computing in Kajaani, Finland, a BullSequana XH2000 sys-
tem with AMD Rome 7H12 CPUs at 2.6GHz and an InfiniBand
HDR100 interconnect. Table III outlines the cell counts, memory
requirement, and effective calculation time per core per cell of both
runs. As before, the AMR solver carries a performance penalty in
terms of computing time per simulated phase space cell. There is also
still somewhat of a resolution gap between the 2D simulation (at
Dx ¼ 300 km) and the 3D run (at Dx ¼ 1000 km), but the overall
reduction in required phase space cells means that a simulated 3D vol-
ume, instead of a 2D slice, is now possible and meaningful scientific
results can now be attained.

IV. CONCLUSIONS AND OUTLOOK

Studies of the near-Earth plasma environment are strongly
dependent on space plasma simulations, whose computational
requirements continue to use a major share of supercomputing resour-
ces worldwide. The methods and results presented in this paper show
that, using a combination of sparse velocity space representation and

spatial adaptive mesh refinement, it is possible to simulate the entire
outer extents of Earth’s magnetosphere close to hybrid-kinetic scales
in three dimensions using a Vlasov simulation code. This outcome
opens the door for modeling studies of magnetospheric plasma phe-
nomena in three dimensions, among these complex phenomena
benefiting from a global view (without the previously required cou-
plings of different simulation approaches63 or limitation to stochastic
sampling of distribution functions as in the PIC approach4).

Section II introduces the dimensional splitting approach used in
Vlasiator’s solver and described the dimension-by-dimension dynamic
pencilization and semi-Lagrangian solver strategy. The combination of
adaptive mesh refinement and a massively parallelized, low-diffusive
phase space solver is novel, and its fields of applicability are only just
starting to be explored.

The scaling results in Subsection III B demonstrate how the
AMR implementation provides a very effective reduction of memory
usage and overall computation time compared to unrefined simula-
tions. Through the introduction of the AMR solver, individual compu-
tations for each computational cell had incurred a computation time
overhead of about 50%. Yet, this is counterbalanced by the fact that
the number of simulation cells directly reduces by a factor of eight for
every introduced refinement level, thus leading to an overall significant
performance gain.

Global magnetospheric simulations performed with these new
methods have been validated against the Ref. 44 magnetopause and
the Ref. 32 bow shock model and show that magnetospheric dynamics
remains intact and consistent across all refinement levels. The simula-
tion extents and resolutions that Vlasiator achieves using the methods
outlined here are now approaching those of global MHD simulations64

and are able to encompass kinetic phenomena that before escaped
global modeling. Yet, even with the current improvements, resolution
of the ion inertial length is still beyond the numerical capabilities of
supercomputers in the unrefined parts of the simulation domain.
Improvement of simulation techniques and implementations are
ongoing.

The current mesh refinement process is only adaptive in its spa-
tial dimensions, while the velocity resolution remains fixed. One
potential future optimization would be the implementation of an
adaptively refined mesh also in the velocity domain of each cell, thus
yielding a fully six-dimensional mesh refinement and hopefully pro-
viding another order-of-magnitude improvement of computational
performance. Another avenue is to decouple the time stepping in
regions of different resolution and different physical properties (as in
Ref. 65) enabling longer time steps where possible and focusing the
computational power on the regions of dynamics at small spatiotem-
poral scales.
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