249 research outputs found

    Construction of an integrated consensus map of the Apple genome based on four mapping populations

    Get PDF
    An integrated consensus genetic map for apple was constructed on the basis of segregation data from four genetically connected crosses (C1¿=¿Discovery × TN10-8, C2¿=¿Fiesta × Discovery, C3¿=¿Discovery × Prima, C4¿=¿Durello di Forli × Fiesta) with a total of 676 individuals using CarthaGene® software. First, integrated female¿male maps were built for each population using common female¿male simple sequence repeat markers (SSRs). Then, common SSRs over populations were used for the consensus map integration. The integrated consensus map consists of 1,046 markers, of which 159 are SSR markers, distributed over 17 linkage groups reflecting the basic chromosome number of apple. The total length of the integrated consensus map was 1,032 cM with a mean distance between adjacent loci of 1.1 cM. Markers were proportionally distributed over the 17 linkage groups (¿ 2¿=¿16.53, df¿=¿16, p¿=¿0.41). A non-uniform marker distribution was observed within all of the linkage groups (LGs). Clustering of markers at the same position (within a 1-cM window) was observed throughout LGs and consisted predominantly of only two to three linked markers. The four integrated female¿male maps showed a very good colinearity in marker order for their common markers, except for only two (CH01h01, CH05g03) and three (CH05a02z, NZ02b01, Lap-1) markers on LG17 and LG15, respectively. This integrated consensus map provides a framework for performing quantitative trait locus (QTL) detection in a multi-population design and evaluating the genetic background effect on QTL expression

    Experimental investigation of chestnut shells gasification

    Get PDF
    Fossil fuels substitution with renewable energy sources is necessary for an effective decarbonization. Biomass can represent a valid alternative to fossil fuels, reducing greenhouse gas emissions. Furthermore, bioenergy generation avoids costs and problems related to biomass disposal. This study presents the energetic valorisation of chestnut shells, a byproduct of the chestnut transformation processes. Through a thermo-conversion system based on gasification, this material was considered not as a waste, but as a resource to be exploited to produce bioenergy and biochar. The fuel gas produced through the gasification process can partially replace the LPG currently used to meet the energy required for the brulage and steam peeling processes. Experimental gasification tests were carried out to evaluate this biomass by means of a laboratory scale micro-gasifier (Imbert downdraft type). Chestnut shells were pelletized with a pelletizer machine to avoid the bridging effect inside the gasifier and increase its energy density. The fuel gas obtained was sampled and analyzed to measure its composition and HHV. In addition, the gasification efficiency was calculated obtaining a value of 70%, a result in line with the ones obtained with higher quality biomasses

    Experimental investigation of moisture influence on biochar and biochar-soil blends thermophysical properties

    Get PDF
    Biochar is a carbonaceous and porous material obtained through pyrolysis or gasification. It can be extremely valuable as soil amendment since it increases the organic matter content and fertility, the microbial activity, the water retention, and the crop yields. Moreover, biochar soil application has the potential for long-term carbon sequestration which makes its application to soil interesting even outside agricultural crops. In recent years, the study of the variation of the thermophysical properties of the soil induced by mixing with biochar has attracted interest. In this work, the effect of the water content on thermal conductivity of biochar was investigated by means of the guarded hot plate apparatus λ-Meter EP500e. The same procedure was applied to various mixtures of biochar and soil. Furthermore, the specific heat was measured in order to obtain the thermal diffusivity in the various conditions through a calorimeter. Solar reflectance was also measured following the ASTM C1549 using a solar spectrum reflectometer SSR-ER. The obtained thermophysical properties can be used for the evaluation of the temperature trend of soil at different depths during the seasonal variations

    Airborne pathogens diffusion: A comparison between tracer gas and pigmented aerosols for indoor environment analysis

    Get PDF
    The evaluation of airborne pathogens diffusion is a crucial practice in preventing airborne diseases like COVID-19, especially in indoor environments. Through this transmission route, pathogens can be carried by droplets, droplet nuclei and aerosols and be conveyed over long distances. Therefore, understanding their diffusion is vital for prevention and curbing disease transmission. There are different techniques used for this purpose, and one of the most common is the utilization of tracer gas, however, it has limitations such as the difference in size between the gas molecules and the respiratory droplets, as well as its incapability to take into account evaporation. For this reason, a new method for evaluating the diffusion of respiratory droplets has been developed. This approach involves the use of an ultrasonic emitter to release and disperse pigmented aerosols, and a colorimeter for the following quantitative evaluation. A comparison with the tracer gas technique has been carried out, showing for the pigmented aerosols methodology a response that is dependent on different relative humidity conditions, while there is no clear difference in the dispersion of tracer gas at high or low humidity

    Optimal Dithering Configuration Mitigating Rayleigh-Backscattering-Induced Distortion in Radioastronomic Optical Fiber Systems

    Get PDF
    In the context of Radioastronomic applications where the Analog Radio-over-Fiber technology is used for the antenna downlink, detrimental nonlinearity effects arise because of the interference between the forward signal generated by the laser and the Rayleigh backscattered one which is re-forwarded by the laser itself toward the photodetector. The adoption of the so called dithering technique, which involves the direct modulation of the laser with a sinusoidal tone and takes advantage of the laser chirping phenomenon, has been proved to reduce such Rayleigh Back Scattering - induced nonlinearities. The frequency and the amplitude of the dithering tone should both be as low as possible, in order to avoid undesired collateral effects on the received spectrum as well as keep at low levels the global energy consumption. Through a comprehensive analysis of dithered Radio over Fiber systems, it is demonstrated that a progressive reduction of the dithering tone frequency affects in a peculiar fashion both the chirping characteristics of the field emitted by the laser and the spectrum pattern of the received signal at the fiber end. Accounting for the concurrent effects caused by such phenomena, optimal operating conditions are identified for the implementation of the dithering tone technique in radioastronomic systems

    Biochar powders coating to improve evaporative cooling in Maisotsenko-cycle systems

    Get PDF
    This work presents an experimental study on the performance of biochar powder coatings on aluminum surfaces for use in indirect evaporative coolers based on the Maisotsenko cycle. The performance of the biochar coated samples was compared to cellulose-coated aluminum samples and uncoated ones. Results showed that biochar coatings improved the performance of uncoated aluminum, with the 150 μm particle size coating offering performance comparable to cellulose. However, wetting times were longer, which has implications for spraying strategies

    Fruit quality characterization of new sweet cherry cultivars as a good source of bioactive phenolic compounds with antioxidant and neuroprotective potential

    Get PDF
    Sweet cherries (Prunus avium L.) are highly appreciated fruits for their taste, color, nutritional value, and beneficial health effects. In this work, seven new cultivars of sweet cherry were investigated for their main quality traits and nutraceutical value. The phytochemical profile of three classes of phenolic compounds and the antioxidant activity of the new cultivars were investigated through high-performance liquid chromatography with diode array detection (HPLC-DAD) and spectrophotometric assays, respectively, and compared with those of commonly commercialized cultivars. Cyanidine-3-O-rutinoside was the main anthocyanin in all genotypes, and its levels in some new cultivars were about three-fold higher than in commercial ones. The ORAC-assayed antioxidant capacity was positively correlated with the total anthocyanin index. The nutraceutical value of the new cultivars was investigated in terms of antioxidant/neuroprotective capacity in neuron-like SH-SY5Y cells. Results demonstrated that the new cultivars were more effective in counteracting oxidative stress and were also able to upregulate brain-derived neurotrophic factor (BDNF), a pro-survival neurotrophin, suggesting their potential pleiotropic role in counteracting neurodegenerations

    Combining genetic resources and elite material populations to improve the accuracy of genomic prediction in apple

    Get PDF
    Genomic selection is an attractive strategy for apple breeding that could reduce the length of breeding cycles. A possible limitation to the practical implementation of this approach lies in the creation of a training set large and diverse enough to ensure accurate predictions. In this study, we investigated the potential of combining two available populations, i.e., genetic resources and elite material, in order to obtain a large training set with a high genetic diversity. We compared the predictive ability of genomic predictions within-population, across-population or when combining both populations, and tested a model accounting for population-specific marker effects in this last case. The obtained predictive abilities were moderate to high according to the studied trait and small increases in predictive ability could be obtained for some traits when the two populations were combined into a unique training set. We also investigated the potential of such a training set to predict hybrids resulting from crosses between the two populations, with a focus on the method to design the training set and the best proportion of each population to optimize predictions. The measured predictive abilities were very similar for all the proportions, except for the extreme cases where only one of the two populations was used in the training set, in which case predictive abilities could be lower than when using both populations. Using an optimization algorithm to choose the genotypes in the training set also led to higher predictive abilities than when the genotypes were chosen at random. Our results provide guidelines to initiate breeding programs that use genomic selection when the implementation of the training set is a limitation
    • …
    corecore