63 research outputs found

    Production and purification of chimeric HBc virus-like particles carrying influenza virus LAH domain as vaccine candidates

    Get PDF
    Background: The lack of a universal influenza vaccine is a global health problem. Interest is now focused on structurally conserved protein domains capable of eliciting protection against a broad range of influenza virus strains. The long alpha helix (LAH) is an attractive vaccine component since it is one of the most conserved influenza hemagglutinin (HA) stalk regions. For an improved immune response, the LAH domain from H3N2 strain has been incorporated into virus-like particles (VLPs) derived from hepatitis B virus core protein (HBc) using recently developed tandem core technology. Results: Fermentation conditions for recombinant HBc-LAH were established in yeast Pichia pastoris and a rapid and efficient purification method for chimeric VLPs was developed to match the requirements for industrial scale-up. Purified VLPs induced strong antibody responses against both group 1 and group 2 HA proteins in mice. Conclusion: Our results indicate that the tandem core technology is a useful tool for incorporation of highly hydrophobic LAH domain into HBc VLPs. Chimeric VLPs can be successfully produced in bioreactor using yeast expression system. Immunologic data indicate that HBc VLPs carrying the LAH antigen represent a promising universal influenza vaccine component

    Human carnitine biosynthesis proceeds via (2S,3S)-3-hydroxy-N(ε)-trimethyllysine

    No full text
    N(ε)-Trimethyllysine hydroxylase (TMLH) catalyses the first step in mammalian biosynthesis of carnitine, which plays a crucial role in fatty acid metabolism. The stereochemistry of the 3-hydroxy-N(ε)-trimethyllysine product of TMLH has not been defined. We report enzymatic and asymmetric synthetic studies, which define the product of TMLH catalysis as (2S,3S)-3-hydroxy-N(ε)-trimethyllysine

    Human carnitine biosynthesis proceeds via (2S,3S)-3-hydroxy-N(ε)-trimethyllysine

    No full text
    N(ε)-Trimethyllysine hydroxylase (TMLH) catalyses the first step in mammalian biosynthesis of carnitine, which plays a crucial role in fatty acid metabolism. The stereochemistry of the 3-hydroxy-N(ε)-trimethyllysine product of TMLH has not been defined. We report enzymatic and asymmetric synthetic studies, which define the product of TMLH catalysis as (2S,3S)-3-hydroxy-N(ε)-trimethyllysine

    Is protein deuteration beneficial for proton detected solid-state NMR at and above 100 kHz magic-angle spinning?

    No full text
    1H-detection in solid-state NMR of proteins has been traditionally combined with deuteration for both resolution and sensitivity reasons, with the optimal level of proton dilution being dependent on MAS rate. Here we present 1H-detected 15N and 13C CP-HSQC spectra on two microcrystalline samples acquired at 60 and 111 kHz MAS and at ultra-high field. We critically compare the benefits of three labeling schemes yielding different levels of proton content in terms of resolution, coherence lifetimes and feasibility of scalar-based 2D correlations under these experimental conditions. We observe unexpectedly high resolution and sensitivity of aromatic resonances in 2D 13C-1H correlation spectra of protonated samples. Ultrafast MAS reduces or even removes the necessity of 1H dilution for high-resolution 1H-detection in biomolecular solid-state NMR. It yields 15N,1H and 13C,1H fingerprint spectra of exceptional resolution for fully protonated samples, with notably superior 1H and 13C lineshapes for side-chain resonances

    Structural and Functional Analysis of BB0689 from Borrelia Burgdorferi, a Member of the Bacterial CAP Superfamily

    No full text
    Spirochete Borrelia burgdorferi is the causative agent of Lyme disease and is transmitted from infected Ixodes ticks to a mammalian host after a tick bite. The outer surface protein BB0689 from B. burgdorferi is up-regulated when the tick feeds, which indicates a potential role for BB0689 in Lyme disease pathogenesis. We have determined the crystal structure of BB0689, which revealed that the protein belongs to the CAP superfamily. Though the CAP domain is widespread in all three cellular domains of life, thus far the CAP domain has been studied only in eukaryotes, in which it is usually linked to certain other domains to form a multi-domain protein and is associated with the mammalian reproductive tract, the plant response to pathogens, venom allergens from insects and reptiles, and the growth of human brain tumors. Though the exact function of the isolated CAP domain remains ambiguous, several functions, including the binding of cholesterol, lipids and heparan sulfate, have been recently attributed to different CAP domain proteins. In this study, the bacterial CAP domain structure was analyzed and compared with the previously solved crystal structures of representative CAPs, and the function of BB0689 was examined. To determine the potential function of BB0689 and ascertain whether the functions that have been attributed to the CAP domain proteins are conserved, the binding of previously reported CAP domain interaction partners was analyzed, and the results suggested that BB0689 has a unique function that is yet to be discovered

    Different binding modes of free and carrier-protein-coupled nicotine in a human monoclonal antibody.

    No full text
    Nicotine is the principal addictive component of tobacco. Blocking its passage from the lung to the brain with nicotine-specific antibodies is a promising approach for the treatment of smoking addiction. We have determined the crystal structure of nicotine bound to the Fab fragment of a fully human monoclonal antibody (mAb) at 1.85 Å resolution. Nicotine is almost completely (>99%) buried in the interface between the variable domains of heavy and light chains. The high affinity of the mAb is the result of a charge-charge interaction, a hydrogen bond, and several hydrophobic contacts. Additionally, similarly to nicotinic acetylcholine receptors in the brain, two cation-π interactions are present between the pyrrolidine charge and nearby aromatic side chains. The selectivity of the mAb for nicotine versus cotinine, which is the major metabolite of nicotine and differs in only one oxygen atom, is caused by steric constraints in the binding site. The mAb was isolated from B cells of an individual immunized with a nicotine-carrier protein conjugate vaccine. Surprisingly, the nicotine was bound to the Fab fragment in an orientation that was not compatible with binding to the nicotine-carrier protein conjugate. The structure of the Fab fragment in complex with the nicotine-linker derivative that was used for the production of the conjugate vaccine revealed a similar position of the pyridine ring of the nicotine moiety, but the pyrrolidine ring was rotated by about 180°. This allowed the linker part to reach to the Fab surface while high-affinity interactions with the nicotine moiety were maintained
    corecore