229 research outputs found

    Suzaku and Optical Spectroscopic Observations of SS 433 in the 2006 April Multiwavelength Campaign

    Full text link
    We report results of the 2006 April multi-wavelengths campaign of SS 433, focusing on X-ray data observed with Suzaku at two orbital phases (in- and out-of- eclipse) and simultaneous optical spectroscopic observations. By analyzing the Fe25 K_alpha lines originating from the jets, we detect rapid variability of the Doppler shifts, dz/dt ~ 0.019/0.33 day^-1, which is larger than those expected from the precession and/or nodding motion. This phenomenon probably corresponding to "jitter" motions observed for the first time in X-rays, for which significant variability both in the jet angle and intrinsic speed is required. From the time lag of optical Doppler curves from those of X-rays, we estimate the distance of the optical jets from the base to be ~(3-4) \times 10^14 cm. Based on the radiatively cooling jet model, we determine the innermost temperature of the jets to be T_0 = 13 +/- 2 keV and 16 +/- 3 keV (the average of the blue and red jets) for the out-of-eclipse and in-eclipse phase, respectively, from the line intensity ratio of Fe25 K_alpha and Fe26 K_alpha. While the broad band continuum spectra over the 5--40 keV band in eclipse is consistent with a multi-temperature bremsstrahlung emission expected from the jets, and its reflection component from cold matter, the out-of-eclipse spectrum is harder than the jet emission with the base temperature determined above, implying the presence of an additional hard component.Comment: 12 pages, 15 figures, accepted for publication in PAS

    Quantitative Estimation of Urate Transport in Nephrons in Relation to Urinary Excretion Employing Benzbromarone-Loading Urate Clearance Tests in Cases of Hyperuricemia

    Get PDF
    Background: A four-component system for urate transport in nephrons has been proposed and widely investigated by various investigators studying the mechanisms underlying urinary urate excretion. However, quantitative determinations of urate transport have not been clearly elucidated yet. Methods: The equation Cua = {Ccr(1 – R1) + TSR}(1 – R2) was designed to approximate mathematically urate transport in nephrons, where R1 = urate reabsorption ratio; R2 = urate postsecretory reabsorption ratio; TSR = tubular secretion rate; Cua = urate clearance, and Ccr = creatinine clearance . To investigate relationships between the three unknown variables (R1, R2, and TSR), this equation was expressed as contour lines of one unknown on a graph of the other two unknowns. Points at regular intervals on each contour line for the equation were projected onto a coordinate axis and the high-density regions corresponding to high-density intervals of a coordinate were investigated for three graph types. For benzbromarone (BBR)-loading Cua tests, Cua was determined before and after oral administration of 100 mg of BBR and CuaBBR(∞) was calculated from the ratio of CuaBBR(100)/Cua. Results: Before BBR administration, points satisfying the equation on the contour line for R1 = 0.99 were highly dense in the region R2 = 0.87–0.92 on all three graphs, corresponding to a TSR of 40–60 ml/min in hyperuricemia cases (HU). After BBR administration, the dense region was shifted in the direction of reductions in both R1 and R2, but TSR was unchanged. Under the condition that R1 = 1 and R2 = 0, urate tubular secretion (UTS) was considered equivalent to calculated urinary urate excretion (Uex) in a model of intratubular urate flow with excess BBR; CuaBBR(∞) = TSR was deduced from the equation at R1 = 1 and R2 = 0. In addition, TSR of the point under the condition that R1 = 1 and R2 = 0 on the graph agreed with TSR for the dense region at excess BBR. TSR was thus considered approximately equivalent to CuaBBR(∞), which could be determined from a BBR-loading Cua test. Approximate values for urate glomerular filtration, urate reabsorption, UTS, urate postsecretory reabsorption (UR2), and Uex were calculated as 9,610; 9,510; 4,490; 4,150, and 440 µg/min for HU and 6,890; 6,820; 4,060; 3,610, and 520 µg/min for normal controls (NC), respectively. The most marked change in HU was the decrease in TSR (32.0%) compared to that in NC, but UTS did not decrease. Calculated intratubular urate contents were reduced more by higher UR2 in HU than in NC. This enhanced difference resulted in a 15.4% decrease in Uex for HU. Conclusion: Increased UR2 may represent the main cause of urate underexcretion in HU

    Combined Spectral and Timing Analysis of the Black Hole Candidate MAXI J1659-152 Discovered by MAXI and Swift

    Get PDF
    We report on X-ray spectral and timing results of the new black hole candidate (BHC) MAXI J1659-152 with the orbital period of 2.41 hours (shortest among BHCs) in the 2010 outburst from 65 Rossi X-ray Timing Explorer (RXTE) observations and 8 simultaneous Swift and RXTE observations. According to the definitions of the spectral states in Remillard & McClintock (2006), most of the observations have been classified into the intermediate state. All the X-ray broadband spectra can be modeled by a multi-color disk plus a power-law with an exponential cutoff or a multi-color disk plus a Comptonization component. During the initial phase of the outburst, a high energy cutoff was visible at 30-40 keV. The innermost radius of the disk gradually decreased by a factor of more than 3 from the onset of the outburst and reached a constant value of 35 d_10 cos i^-1/2 km, where d_10 is the distance in units of 10 kpc and ii is the inclination. The type-C quasi-periodic oscillation (QPO) frequency varied from 1.6 Hz to 7.3 Hz in association with a change of the innermost radius, while the innermost radius remained constant during the type-B QPO detections at 1.6-4.1 Hz. Hence, we suggest that the origin of the type-B QPOs is different from that of type-C QPOs, the latter of which would originate from the disk truncation radius. Assuming the constant innermost radius in the latter phase of the outburst as the innermost stable circular orbit, the black hole mass in MAXI J1659-152 is estimated to be 3.6-8.0 M_solar for a distance of 5.3-8.6 kpc and an inclination angle of 60-75 degrees.Comment: 27 pages, 14 figures, accepted for publication in PAS

    Endothelium-derived Hyperpolarizing Factor (EDHF) Mediates Endothelium-dependent Vasodilator Effects of Aqueous Extracts from Eucommia ulmoides Oliv. Leaves in Rat Mesenteric Resistance Arteries

    Get PDF
    The vascular effects of an aqueous extract prepared from the leaves of Eucommia ulmoides Oliv. (ELE), a medicinal herb commonly used in antihypertensive herbal prescriptions in China, were investigated in rat mesenteric resistance arteries. The mesenteric vascular bed was perfused with Krebs solution and the perfusion pressure was measured with a pressure transducer. In preparations with an intact endothelium and precontracted with 7&#956;M methoxamine, perfusion of ELE (10&#65293;7&#65293;10&#65293;2mg/ml for 15min) caused a concentration-dependent vasodilatation, which was abolished by chemical removal of the endothelium. The ELE-induced vasodilatation was inhibited by neither indomethacin (INDO, a cyclooxygenase inhibitor) nor NG-nitro-L-arginine-methyl ester (L-NAME, a nitric oxide inhibitor). The ELE-induced vasodilatation was significantly inhibited by tetraethylammonium (TEA, a K+ channel blocker) and 18&#945;-glycyrrhetinic acid (18&#945;-GA, a gap-junction inhibitor), and abolished by high K+ -containing Krebs&#700; solution. Atropine (a muscarinic acetylcholine receptor antagonist) significantly inhibited the vasodilatation induced by ELE at high concentrations. These results suggest that the ELE-induced vasodilatation is endothelium-dependent but nitric oxide (NO)- and prostaglandin I2 (PGI2)-independent, and is mainly mediated by the endothelium-derived hyperpolarizing factor (EDHF) in the mesenteric resistance arteries. Furthermore, the ELE-induced EDHF-mediated response involves the activation of K+-channels and gap junctions.</p

    Cerebral amyloid angiopathy-related inflammation presenting with steroid-responsive higher brain dysfunction: case report and review of the literature

    Get PDF
    A 56-year-old man noticed discomfort in his left lower limb, followed by convulsion and numbness in the same area. Magnetic resonance imaging (MRI) showed white matter lesions in the right parietal lobe accompanied by leptomeningeal or leptomeningeal and cortical post-contrast enhancement along the parietal sulci. The patient also exhibited higher brain dysfunction corresponding with the lesions on MRI. Histological pathology disclosed β-amyloid in the blood vessels and perivascular inflammation, which highlights the diagnosis of cerebral amyloid angiopathy (CAA)-related inflammation. Pulse steroid therapy was so effective that clinical and radiological findings immediately improved

    Semiconductor-type SnO2-based NO2 sensors operated at room temperature under UV-light irradiation

    Get PDF
    NO2-sensing properties of typical oxide (SnO2, In2O3, or WO3)-based semiconductor gas sensors were measured at 30 °C with and without UV-light irradiation (main wavelength: 365 nm), and effects of noble-metal (Pd or Pt) loading, UV-light intensity (0?134 mW cm?2) and relative humidity in target gas (0?80%RH) on their NO2-sensing properties were investigated in this study. The UV-light irradiation effectively reduced the resistances of all sensors, enhanced their NO2 responses in some cases, and tended to accelerate their response and recovery speeds in dry air, because the UV-light irradiation promoted the adsorption and desorption of NO2-species on the surface. The SnO2 sensor showed the largest NO2 response in dry air, among all the pristine oxide sensors, especially under weak UV-light irradiation (?35 mW cm?2), together with relatively fast response and recovery speeds. The Pd or Pt loading onto SnO2 enhanced the NO2 response of the SnO2 sensor and accelerated their response and recovery speeds in dry air, while XPS analysis indicated that most of the Pd and Pt nanoparticles loaded on the surface were oxidized after heat treatment at 500 °C. Among all the sensors, the 0.05 wt% Pd-loaded SnO2 sensor showed the largest NO2 response under weak UV-light irradiation (?35 mW cm?2), together with relatively fast response and recovery speeds. The addition of moisture to the target gas had adverse effects on the NO2 responses and the response speeds of the SnO2 and 0.05 wt% Pd-loaded SnO2 sensors, but the weak UV-light irradiation (7 mW cm?2) largely reduced the dependence of the NO2 response of the 0.05Pd/SnO2 sensor on relative humidity while maintaining the large NO2 response, probably because the weak UV-light irradiation promotes the desorption of physisorbed water molecules and then the effective adsorption of NO2 on the 0.05Pd/SnO2 surface

    Effects of Addition of CuxO to Porous SnO2 Microspheres Prepared by Ultrasonic Spray Pyrolysis on Sensing Properties to Volatile Organic Compounds

    Get PDF
    Porous (pr-)SnO2-based powders were synthesized by ultrasonic spray pyrolysis employing home-made polymethylmethacrylate (PMMA) microspheres (typical particle size: 70 nm in diameter), and effects of the CuxO addition to the pr-SnO2 powder on the acetone and toluene sensing properties were investigated. Well-developed spherical pores reflecting the morphology of the PMMA microsphere templates were formed in the SnO2-based powders, which were quite effective in enhancing the acetone and toluene responses. The 0.8 wt% Cu-added pr-SnO2 sensor showed the largest acetone response at 350 °C among all the sensors. Furthermore, we clarified that the addition of CuxO onto the pr-SnO2 decreased the concentration of carrier electrons and the acetone-oxidation activity, leading to the improvement of the acetone-sensing properties of the pr-SnO2 sensor

    Observation of micropores in hard-carbon using Xe-129 NMR porosimetry

    Get PDF
    The existence of micropores and the change of surface structure in pitch-based hard-carbon in xenon atmosphere were demonstrated using Xe-129 NMR. For high-pressure (4.0 MPa) Xe-129 NMR measurements, the hard-carbon samples in Xe gas showed three peaks at 27, 34 and 210 ppm. The last was attributed to the xenon in micropores (<1 nm) in hard-carbon particles. The NMR spectrum of a sample evacuated at 773 K and exposed to 0.1 MPa Xe gas at 773 K for 24 h showed two peaks at 29 and 128 ppm, which were attributed, respectively, to the xenon atoms adsorbed in the large pores (probably mesopores) and micropores of hard-carbon. With increasing annealing time in Xe gas at 773 K, both peaks shifted and merged into one peak at 50 ppm. The diffusion of adsorbed xenon atoms is very slow, probably because the transfer of molecules or atoms among micropores in hard-carbon does not occur readily. Many micropores are isolated from the outer surface. For that reason, xenon atoms are thought to be adsorbed only by micropores near the surface, which are easily accessible from the surrounding space.</p

    Diagnostic value of computed high b-value whole-body diffusion-weighted imaging for primary prostate cancer

    Get PDF
    Purpose: To investigate the utility of post-acquisition computed diffusion-weighted imaging (cDWI) for primary prostate cancer (PCa) evaluation in biparametric whole-body MRI (bpWB-MRI). Methods: Patients who underwent pelvic MRI for PCa screening and subsequent bpWB-MRI for staging were included. Two radiologists assessed the diagnostic performance of the following datasets for clinically significant PCa diagnosis (grade group >= 2 according to the Prostate Imaging-Reporting and Data System, version 2.1): bpMRI(2000) (axial DWI scans with a b-value of 2,000 s/mm(2) + axial T2WI scans from pre-biopsy pelvic MRI), computed bpWB-MRI2000 (computed WB-DWI scans with a b-value of 2,000 s/mm(2) + axial WB-T2WI scans), and native bpWB-MRI1000 (native axial WB-DWI scans with a b-value of 1,000 s/mm(2) + axial WB-T2WI scans). Systemic biopsy was used as reference standard. Results: Fifty-one patients with PCa were included. The areas under the curve (AUCs) of bpMRI(2000) (0.89 for reader 1 and 0.86 for reader 2) and computed bpWB-MRI2000 (0.86 for reader 1 and 0.83 for reader 2) were significantly higher (p < 0.001) than those of native bpWB-MRI1000 (0.67 for both readers). No significant difference was observed between the AUCs of bpMRI(2000) and computed bpWB-MRI2000 (p = 0.10 for reader 1 and p = 0.25 for reader 2). Conclusions: The diagnostic performance of computed bpWB-MRI2000 was similar to that of dedicated pelvic bpMRI(2000) for primary PCa evaluation. cDWI can be recommended for implementation in standard WB-MRI protocols to facilitate a one-step evaluation for concurrent detection of primary and metastatic PCa
    corecore