824 research outputs found
Searching for the QCD Critical Point Using Particle Ratio Fluctuations and Higher Moments of Multiplicity Distributions
Dynamical fluctuations in global conserved quantities such as baryon number,
strangeness, or charge may be observed near a QCD critical point. Results from
new measurements of dynamical , , and ratio fluctuations
are presented. The commencing of a QCD critical point search at RHIC has
extended the reach of possible measurements of dynamical , , and
ratio fluctuations from Au+Au collisions to lower energies. The STAR
experiment has performed a comprehensive study of the energy dependence of
these dynamical fluctuations in Au+Au collisions at the energies
= 7.7, 11.5, 39, 62.4, and 200 GeV. New results are compared to
previous measurements and to theoretical predictions from several models. The
measured dynamical fluctuations are found to be independent of
collision energy, while dynamical and fluctuations have a
negative value that increases toward zero at top RHIC energy. Fluctuations of
the higher moments of conserved quantities (net-proton and net-charge)
distributions, which are predicted to be sensitive to the presence of a
critical point, are also presented.Comment: 4 pages, 2 figures, Proceedings of the 21st International Conference
On Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2011), Annecy,
France, May 23 - May 28, 201
Forward-backward correlations in nucleus-nucleus collisions: baseline contributions from geometrical fluctuations
We discuss the effects of initial collision geometry and centrality bin
definition on correlation and fluctuation observables in nucleus-nucleus
collisions. We focus on the forward-backward correlation coefficient recently
measured by the STAR Collaboration in Au+Au collisions at RHIC. Our study is
carried out within two models: the Glauber Monte Carlo code with a `toy'
wounded nucleon model and the hadron-string dynamics (HSD) transport approach.
We show that strong correlations can arise due to averaging over events in one
centrality bin. We, furthermore, argue that a study of the dependence of
correlations on the centrality bin definition as well as the bin size may
distinguish between these `trivial' correlations and correlations arising from
`new physics'.Comment: 12 pages, 6 figure
Strongly Intensive Measures for Multiplicity Fluctuations
The recently proposed two families of strongly intensive measures of
fluctuations and correlations are studied within Hadron-String-Dynamics (HSD)
transport approach to nucleus-nucleus collisions. We consider the measures
and for kaon and pion multiplicities in Au+Au
collisions in a wide range of collision energies and centralities. These
strongly intensive measures appear to cancel the participant number
fluctuations. This allows to enlarge the centrality window in the analysis of
event-by-event fluctuations up to at least of 10% most central collisions. We
also present a comparison of the HSD results with the data of NA49 and STAR
collaborations. The HSD describes reasonably well. However, the
HSD results depend monotonously on collision energy and do not reproduce the
bump-deep structure of observed from the NA49 data in the
region of the center of mass energy of nucleon pair
GeV. This fact deserves further studies. The origin of this `structure' is not
connected with simple geometrical or limited acceptance effects, as these
effects are taken into account in the HSD simulations
Strangelet search at RHIC
Two position sensitive Shower Maximum Detector (SMDs) for Zero-Degree
Calorimeters (ZDCs) were installed by STAR before run 2004 at both upstream and
downstream from the interaction point along the beam axis where particles with
small rigidity are swept away by strong magnetic field. The ZDC-SMDs provides
information about neutral energy deposition as a function of transverse
position in ZDCs. We report the preliminary results of strangelet search from a
triggered data-set sampling 100 million Au+Au collisions at top RHIC energy.Comment: Strange Quark Matter 2004 conference proceedin
Strangelet Search in AuAu Collisions at 200 GeV
We have searched for strangelets in a triggered sample of 61 million central
(top 4%) Au+Au collisions at \sNN = 200 GeV near beam rapidities at the STAR
detector. We have sensitivity to metastable strangelets with lifetimes of order
, in contrast to limits over ten times longer in AGS studies and
longer still at the SPS. Upper limits of a few 10^{-6} to 10^{-7} per central
Au+Au collision are set for strangelets with mass GeV/c^{2}.Comment: As publishe
Longitudinal double-spin asymmetry for inclusive jet production in p+p collisions at sqrt(s)=200 GeV
We report a new STAR measurement of the longitudinal double-spin asymmetry
A_LL for inclusive jet production at mid-rapidity in polarized p+p collisions
at a center-of-mass energy of sqrt(s) = 200 GeV. The data, which cover jet
transverse momenta 5 < p_T < 30 GeV/c, are substantially more precise than
previous measurements. They provide significant new constraints on the gluon
spin contribution to the nucleon spin through the comparison to predictions
derived from one global fit of polarized deep-inelastic scattering
measurements.Comment: 7 pages, 4 figures + 1 tabl
Studies of di-jet survival and surface emission bias in Au+Au collisions via angular correlations with respect to back-to-back leading hadrons
We report first results from an analysis based on a new multi-hadron
correlation technique, exploring jet-medium interactions and di-jet surface
emission bias at RHIC. Pairs of back-to-back high transverse momentum hadrons
are used for triggers to study associated hadron distributions. In contrast
with two- and three-particle correlations with a single trigger with similar
kinematic selections, the associated hadron distribution of both trigger sides
reveals no modification in either relative pseudo-rapidity or relative
azimuthal angle from d+Au to central Au+Au collisions. We determine associated
hadron yields and spectra as well as production rates for such correlated
back-to-back triggers to gain additional insights on medium properties.Comment: By the STAR Collaboration. 6 pages, 2 figure
System-Size Independence of Directed Flow Measured at the BNL Relativistic Heavy-Ion Collider
We measure directed flow (ν_1) for charged particles in Au+Au and Cu+Cu collisions at √S_(NN)=200 and 62.4 GeV, as a function of pseudorapidity (η), transverse momentum (p_t), and collision centrality, based on data from the STAR experiment. We find that the directed flow depends on the incident energy but, contrary to all available model implementations, not on the size of the colliding system at a given centrality. We extend the validity of the limiting fragmentation concept to ν_1 in different collision systems, and investigate possible explanations for the observed sign change in ν_1(p_t)
- …
