72 research outputs found

    Invited review: Genomic selection for small ruminants in developed countries: how applicable for the rest of the world?

    Get PDF
    Improved management and use of estimated breeding values in breeding programmes, have resulted in rapid genetic progress for small ruminants (SR) in Europe and other developed countries. The development of single nucleotide polymorphisms chips opened opportunities for genomic selection (GS) in SR in these countries. Initially focused on production traits (growth and milk), GS has been extended to functional traits (reproductive performance, disease resistance and meat quality). The GS systems have been characterized by smaller reference populations compared with those of dairy cattle and consisting mostly of cross- or multi-breed populations. Molecular information has resulted in gains in accuracy of between 0.05 and 0.27 and proved useful in parentage verification and the identification of QTLs for economically important traits. Except for a few established breeds with some degree of infrastructure, the basic building blocks to support conventional breeding programmes in small holder systems are lacking in most developing countries. In these systems, molecular data could offer quick wins in undertaking parentage verification and genetic evaluations using G matrix, and determination of breed composition. The development of next-generation molecular tools has prompted investigations on genome-wide signatures of selection for mainly adaptive and reproduction traits in SR in developing countries. Here, the relevance of the developments and application of GS and other molecular tools in developed countries to developing countries context is examined. Worth noting is that in the latter, the application of GS in SR will not be a ‘one-size fits all’ scenario. For breeds with some degree of conventional genetic improvement, classical GS may be feasible. In small holder systems, where production is key, community-based breeding programmes can provide the framework to implement GS. However, in fragile growth systems, for example those found in marginal environments, innovative GS to maximize adaptive diversity will be required. A cost-benefit analysis should accompany any strategy of implementing GS in these systems

    One-dimensional collision carts computer model and its design ideas for productive experiential learning

    Full text link
    We develop an Easy Java Simulation (EJS) model for students to experience the physics of idealized one-dimensional collision carts. The physics model is described and simulated by both continuous dynamics and discrete transition during collision. In the field of designing computer simulations, we discuss briefly three pedagogical considerations such as 1) consistent simulation world view with pen paper representation, 2) data table, scientific graphs and symbolic mathematical representations for ease of data collection and multiple representational visualizations and 3) game for simple concept testing that can further support learning. We also suggest using physical world setup to be augmented complimentary with simulation while highlighting three advantages of real collision carts equipment like tacit 3D experience, random errors in measurement and conceptual significance of conservation of momentum applied to just before and after collision. General feedback from the students has been relatively positive, and we hope teachers will find the simulation useful in their own classes. 2015 Resources added: http://iwant2study.org/ospsg/index.php/interactive-resources/physics/02-newtonian-mechanics/02-dynamics/46-one-dimension-collision-js-model http://iwant2study.org/ospsg/index.php/interactive-resources/physics/02-newtonian-mechanics/02-dynamics/195-elastic-collisionComment: 6 pages, 8 figures, 1 table, 1 L. K. Wee, Physics Education 47 (3), 301 (2012); ISSN 0031-912

    Preliminary Report: Missense mutations in the APOL gene family are associated with end stage kidney disease risk previously attributed to the MYH9 gene

    Get PDF
    MYH9 has been proposed as a major genetic risk locus for a spectrum of non-diabetic end stage kidney disease (ESKD). We use recently released sequences from the 1000 Genomes Project to identify two western African specific missense mutations (S342G and I384M) in the neighbouring APOL1 gene, and demonstrate that these are more strongly associated with ESKD than previously reported MYH9 variants. We also show that the distribution of these risk variants in African populations is consistent with the pattern of African ancestry ESKD risk previously attributed to the MYH9 gene. Additional associations were also found among other members of the APOL gene family, and we propose that ESKD risk is caused by western African variants in members of the APOL gene family, which evolved to confer protection against pathogens, such as Trypanosoma.Comment: 25 pages, 6 figure

    Exploring barriers to the use of formal maternal health services and priority areas for action in Sidama zone, southern Ethiopia.

    Get PDF
    In 2015 the maternal mortality ratio for Ethiopia was 353 per 100,000 live births. Large numbers of women do not use maternal health services. This study aimed to identify factors influencing the use of maternal health services at the primary health care unit (PHCU) level in rural communities in Sidama zone, south Ethiopia in order to design quality improvement interventions. We conducted a qualitative study in six woredas in 2013: 14 focus group discussions (FGDs) and 44 in-depth interviews with purposefully selected community members (women, male, traditional birth attendants, local kebele administrators), health professionals and health extension workers (HEWs) at PHCUs. We digitally recorded, transcribed and thematically analysed the interviews and FGDs using Nvivo. The 'three delay model' informed the analytical process and discussion of barriers to the use of maternal health services. Lack of knowledge on danger signs and benefits of maternal health services; cultural and traditional beliefs; trust in TBAs; lack of decision making power of women, previous negative experiences with health facilities; fear of going to an unfamiliar setting; lack of privacy and perceived costs of maternal health services were the main factors causing the first delay in deciding to seek care. Transport problems in inaccessible areas were the main contributing factor for the second delay on reaching care facilities. Lack of logistic supplies and equipment, insufficient knowledge and skills and unprofessional behaviour of health workers were key factors for the third delay in accessing quality care. Use of maternal health services at the PHCU level in Sidama zone is influenced by complex factors within the community and health system. PHCUs should continue to implement awareness creation activities to improve knowledge of the community on complications of pregnancy and benefits of maternal health services. The health system has to be responsive to community's cultural norms and practices. The mangers of the woreda health office and health centres should take into account the available budgets; work on ensuring the necessary logistics and supplies to be in place at PHCU

    Ethiopian indigenous goats offer insights into past and recent demographic dynamics and localadaptation in sub-Saharan African goats

    Get PDF
    Abstract Knowledge on how adaptive evolution and human socio‐cultural and economic interests shaped livestock genomes particularly in sub‐Saharan Africa remains limited. Ethiopia is in a geographic region that has been critical in the history of African agriculture with ancient and diverse human ethnicity and bio‐climatic conditions. Using 52K genome‐wide data analysed in 646 individuals from 13 Ethiopian indigenous goat populations, we observed high levels of genetic variation. Although runs of homozygosity (ROH) were ubiquitous genome‐wide, there were clear differences in patterns of ROH length and abundance and in effective population sizes illustrating differences in genome homozygosity, evolutionary history, and management. Phylogenetic analysis incorporating patterns of genetic differentiation and gene flow with ancestry modelling highlighted past and recent intermixing and possible two deep ancient genetic ancestries that could have been brought by humans with the first introduction of goats in Africa. We observed four strong selection signatures that were specific to Arsi‐Bale and Nubian goats. These signatures overlapped genomic regions with genes associated with morphological, adaptation, reproduction and production traits due possibly to selection under environmental constraints and/or human preferences. The regions also overlapped uncharacterized genes, calling for a comprehensive annotation of the goat genome. Our results provide insights into mechanisms leading to genome variation and differentiation in sub‐Saharan Africa indigenous goats

    Dried blood spots as a source of anti-malarial antibodies for epidemiological studies

    Get PDF
    BACKGROUND: Blood spots collected onto filter paper are an established and convenient source of antibodies for serological diagnosis and epidemiological surveys. Although recommendations for the storage and analysis of small molecule analytes in blood spots exist, there are no published systematic studies of the stability of antibodies under different storage conditions. METHODS: Blood spots, on filter paper or glass fibre mats and containing malaria-endemic plasma, were desiccated and stored at various temperatures for different times. Eluates of these spots were assayed for antibodies against two Plasmodium falciparum antigens, MSP-119 and MSP2, and calculated titres used to fit an exponential (first order kinetic) decay model. The first order rate constants (k) for each spot storage temperature were used to fit an Arrhenius equation, in order to estimate the thermal and temporal stability of antibodies in dried blood spots. The utility of blood spots for serological assays was confirmed by comparing antibodies eluted from blood spots with the equivalent plasma values in a series of samples from North Eastern Tanzania and by using blood spot-derived antibodies to estimate malaria transmission intensity in this site and for two localities in Uganda. RESULTS: Antibodies in spots on filter paper and glass fibre paper had similar stabilities but blood was more easily absorbed onto filter papers than glass fibre, spots were more regular and spot size was more closely correlated with blood volume for filter paper spots. Desiccated spots could be stored at or below 4 degrees C for extended periods, but were stable for only very limited periods at ambient temperature. When desiccated, recoveries of antibodies that are predominantly of IgG1 or IgG3 subclasses were similar. Recoveries of antibodies from paired samples of serum and of blood spots from Tanzania which had been suitably stored showed similar recoveries of antibodies, but spots which had been stored for extended periods at ambient humidity and temperature showed severe loss of recoveries. Estimates of malaria transmission intensity obtained from serum and from blood spots were similar, and values obtained using blood spots agreed well with entomologically determined values. CONCLUSION: This study has demonstrated the suitability of filter paper blood spots paper for collection of serum antibodies, and provided clear guidelines for the treatment and storage of filter papers which emphasize the importance of desiccation and minimisation of time spent at ambient temperatures. A recommended protocol for collecting, storing and assaying blood spots is provided

    Bacteria-inducing legume nodules involved in the improvement of plant growth, health and nutrition

    Get PDF
    Bacteria-inducing legume nodules are known as rhizobia and belong to the class Alphaproteobacteria and Betaproteobacteria. They promote the growth and nutrition of their respective legume hosts through atmospheric nitrogen fixation which takes place in the nodules induced in their roots or stems. In addition, rhizobia have other plant growth-promoting mechanisms, mainly solubilization of phosphate and production of indoleacetic acid, ACC deaminase and siderophores. Some of these mechanisms have been reported for strains of rhizobia which are also able to promote the growth of several nonlegumes, such as cereals, oilseeds and vegetables. Less studied are the mechanisms that have the rhizobia to promote the plant health; however, these bacteria are able to exert biocontrol of some phytopathogens and to induce the plant resistance. In this chapter, we revised the available data about the ability of the legume nodule-inducing bacteria for improving the plant growth, health and nutrition of both legumes and nonlegumes. These data showed that rhizobia meet all the requirements of sustainable agriculture to be used as bio-inoculants allowing the total or partial replacement of chemicals used for fertilization or protection of crops

    Novel Wolbachia strains in Anopheles malaria vectors from Sub-Saharan Africa.

    Get PDF
    Background:  Wolbachia, a common insect endosymbiotic bacterium that can influence pathogen transmission and manipulate host reproduction, has historically been considered absent from the  Anopheles (An.) genera, but has recently been found in  An. gambiae s.l. populations in West Africa.  As there are numerous  Anopheles species that have the capacity to transmit malaria, we analysed a range of species across five malaria endemic countries to determine  Wolbachia prevalence rates, characterise novel  Wolbachia strains and determine any correlation between the presence of  Plasmodium,  Wolbachia and the competing bacterium  Asaia. Methods:  Anopheles adult mosquitoes were collected from five malaria-endemic countries: Guinea, Democratic Republic of the Congo (DRC), Ghana, Uganda and Madagascar, between 2013 and 2017.  Molecular analysis was undertaken using quantitative PCR, Sanger sequencing,  Wolbachia multilocus sequence typing (MLST) and high-throughput amplicon sequencing of the bacterial  16S rRNA gene.  Results: Novel  Wolbachia strains were discovered in five species:  An. coluzzii,  An. gambiae s.s.,  An. arabiensis,  An. moucheti and  An. species A, increasing the number of  Anopheles species known to be naturally infected. Variable prevalence rates in different locations were observed and novel strains were phylogenetically diverse, clustering with  Wolbachia supergroup B strains.  We also provide evidence for resident strain variants within  An. species A.  Wolbachia is the dominant member of the microbiome in  An. moucheti and  An. species A but present at lower densities in  An. coluzzii.  Interestingly, no evidence of  Wolbachia/Asaia co-infections was seen and  Asaia infection densities were shown to be variable and location dependent.  Conclusions: The important discovery of novel  Wolbachia strains in  Anopheles provides greater insight into the prevalence of resident  Wolbachia strains in diverse malaria vectors.  Novel  Wolbachia strains (particularly high-density strains) are ideal candidate strains for transinfection to create stable infections in other  Anopheles mosquito species, which could be used for population replacement or suppression control strategies

    Measuring progress and projecting attainment on the basis of past trends of the health-related Sustainable Development Goals in 188 countries: an analysis from the Global Burden of Disease Study 2016

    Get PDF
    The UN’s Sustainable Development Goals (SDGs) are grounded in the global ambition of “leaving no one behind”. Understanding today’s gains and gaps for the health-related SDGs is essential for decision makers as they aim to improve the health of populations. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016), we measured 37 of the 50 health-related SDG indicators over the period 1990–2016 for 188 countries, and then on the basis of these past trends, we projected indicators to 2030
    corecore