107 research outputs found

    Differentiating the Cognitive Profile of Schizophrenia from That of Alzheimer Disease and Depression in Late Life

    Get PDF
    To compare the cognitive profile of older patients with schizophrenia to those with other neuropsychiatric disorders assessed in a hospital-based memory clinic.Demographic, clinical, and cognitive data of all patients referred to the memory clinic at the Centre for Addiction and Mental Health between April 1, 2006 and August 15, 2008 were reviewed. We then identified four groups of older patients with: (1) late-life schizophrenia (LLS) and no dementia or depression (DEP); (2) Alzheimer's disease (AD); (3) DEP and no dementia or LLS; (4) normal cognition (NC) and no DEP or LLS.The four groups did not differ in demographic data except that patients with AD were about 12 years older than those with LLS. However, they differed on cognitive tests even after controlling for age. Patients with LLS were impaired on most cognitive tests in comparison with patients with NC but not on recalling newly learned verbal information at a short delay. They experienced equivalent performance on learning new verbal information in comparison with patients with AD, but better performance on all other tests of memory, including the ability to recall newly learned verbal information. Finally, they were more impaired than patients with DEP in overall memory.Patients with LLS have a different cognitive profile than patients with AD or DEP. Particularly, memory impairment in LLS seems to be more pronounced in learning than recall. These findings suggest that cognitive and psychosocial interventions designed to compensate for learning deficits may be beneficial in LLS

    Myelin-Associated Glycoprotein Gene and Brain Morphometry in Schizophrenia

    Get PDF
    Myelin and oligodendrocyte disruption may be a core feature of schizophrenia pathophysiology. The purpose of the present study was to localize the effects of previously identified risk variants in the myelin-associated glycoprotein (MAG) gene on brain morphometry in schizophrenia patients and healthy controls. Forty-five schizophrenia patients and 47 matched healthy controls underwent clinical, structural magnetic resonance imaging, and genetics procedures. Gray and white matter cortical lobe volumes along with hippocampal volumes were calculated from T1-weighted MRI scans. Each subject was also genotyped for the two disease-associated MAG single nucleotide polymorphisms (rs720308 and rs720309). Repeated measures general linear model (GLM) analysis found significant region by genotype and region by genotype by diagnosis interactions for the effects of MAG risk variants on lobar gray matter volumes. No significant associations were found with lobar white matter volumes or hippocampal volumes. Follow-up univariate GLMs found the AA genotype of rs720308 predisposed schizophrenia patients to left temporal and parietal gray matter volume deficits. These results suggest that the effects of the MAG gene on cortical gray matter volume in schizophrenia patients can be localized to temporal and parietal cortices. Our results support a role for MAG gene variation in brain morphometry in schizophrenia, align with other lines of evidence implicating MAG in schizophrenia, and provide genetically based insight into the heterogeneity of brain imaging findings in this disorder

    Resting state electroencephalography microstates in autism spectrum disorder: a mini-review

    Get PDF
    Atypical spatial organization and temporal characteristics, found via resting state electroencephalography (EEG) microstate analysis, have been associated with psychiatric disorders but these temporal and spatial parameters are less known in autism spectrum disorder (ASD). EEG microstates reflect a short time period of stable scalp potential topography. These canonical microstates (i.e., A, B, C, and D) and more are identified by their unique topographic map, mean duration, fraction of time covered, frequency of occurrence and global explained variance percentage; a measure of how well topographical maps represent EEG data. We reviewed the current literature for resting state microstate analysis in ASD and identified eight publications. This current review indicates there is significant alterations in microstate parameters in ASD populations as compared to typically developing (TD) populations. Microstate parameters were also found to change in relation to specific cognitive processes. However, as microstate parameters are found to be changed by cognitive states, the differently acquired data (e.g., eyes closed or open) resting state EEG are likely to produce disparate results. We also review the current understanding of EEG sources of microstates and the underlying brain networks

    Paired-Associative Stimulation-Induced Long-term Potentiation-Like Motor Cortex Plasticity in Healthy Adolescents

    Get PDF
    ObjectiveThe objective of this study was to evaluate the feasibility of using paired-associative stimulation (PAS) to study excitatory and inhibitory plasticity in adolescents while examining variables that may moderate plasticity (such as sex and environment).MethodsWe recruited 34 healthy adolescents (aged 13–19, 13 males, 21 females). To evaluate excitatory plasticity, we compared mean motor-evoked potentials (MEPs) elicited by single-pulse transcranial magnetic stimulation (TMS) before and after PAS at 0, 15, and 30 min. To evaluate inhibitory plasticity, we evaluated the cortical silent period (CSP) elicited by single-pulse TMS in the contracted hand before and after PAS at 0, 15, and 30 min.ResultsAll participants completed PAS procedures. No adverse events occurred. PAS was well tolerated. PAS-induced significant increases in the ratio of post-PAS MEP to pre-PAS MEP amplitudes (p < 0.01) at all post-PAS intervals. Neither socioeconomic status nor sex was associated with post-PAS MEP changes. PAS induced significant CSP lengthening in males but not females.ConclusionPAS is a feasible, safe, and well-tolerated index of adolescent motor cortical plasticity. Gender may influence PAS-induced changes in cortical inhibition. PAS is safe and well tolerated by healthy adolescents and may be a novel tool with which to study adolescent neuroplasticity

    Exploratory genome-wide analyses of cortical inhibition, facilitation, and plasticity in late-life depression

    Get PDF
    Late-life depression (LLD) is a heterogenous mood disorder influenced by genetic factors. Cortical physiological processes such as cortical inhibition, facilitation, and plasticity may be markers of illness that are more strongly associated with genetic factors than the clinical phenotype. Thus, exploring the relationship between genetic factors and these physiological processes may help to characterize the biological mechanisms underlying LLD and improve diagnosis and treatment selection. Transcranial magnetic stimulation (TMS) combined with electromyography was used to measure short interval intracortical inhibition (SICI), cortical silent period (CSP), intracortical facilitation (ICF), and paired associative stimulation (PAS) in 79 participants with LLD. We used exploratory genome-wide association and gene-based analyses to assess for genetic correlations of these TMS measures. MARK4 (which encodes microtubule affinity-regulating kinase 4) and PPP1R37 (which encodes protein phosphatase 1 regulatory subunit 37) showed genome-wide significant association with SICI. EGFLAM (which encodes EGF-like fibronectin type III and laminin G domain) showed genome-wide significant association with CSP. No genes met genome-wide significant association with ICF or PAS. We observed genetic influences on cortical inhibition in older adults with LLD. Replication with larger sample sizes, exploration of clinical phenotype subgroups, and functional analysis of relevant genotypes is warranted to better characterize genetic influences on cortical physiology in LLD. This work is needed to determine whether cortical inhibition may serve as a biomarker to improve diagnostic precision and guide treatment selection in LLD

    Caregiving concerns and clinical characteristics across neurodegenerative and cerebrovascular disorders in the Ontario neurodegenerative disease research initiative

    Get PDF
    Objectives: Caregiving burdens are a substantial concern in the clinical care of persons with neurodegenerative disorders. In the Ontario Neurodegenerative Disease Research Initiative, we used the Zarit\u27s Burden Interview (ZBI) to examine: (1) the types of burdens captured by the ZBI in a cross-disorder sample of neurodegenerative conditions (2) whether there are categorical or disorder-specific effects on caregiving burdens, and (3) which demographic, clinical, and cognitive measures are related to burden(s) in neurodegenerative disorders?. Methods/Design: N = 504 participants and their study partners (e.g., family, friends) across: Alzheimer\u27s disease/mild cognitive impairment (AD/MCI; n = 120), Parkinson\u27s disease (PD; n = 136), amyotrophic lateral sclerosis (ALS; n = 38), frontotemporal dementia (FTD; n = 53), and cerebrovascular disease (CVD; n = 157). Study partners provided information about themselves, and information about the clinical participants (e.g., activities of daily living (ADL)). We used Correspondence Analysis to identify types of caregiving concerns in the ZBI. We then identified relationships between those concerns and demographic and clinical measures, and a cognitive battery. Results: We found three components in the ZBI. The first was “overall burden” and was (1) strongly related to increased neuropsychiatric symptoms (NPI severity r = 0.586, NPI distress r = 0.587) and decreased independence in ADL (instrumental ADLs r = −0.566, basic ADLs r = −0.43), (2) moderately related to cognition (MoCA r = −0.268), and (3) showed little-to-no differences between disorders. The second and third components together showed four types of caregiving concerns: current care of the person with the neurodegenerative disease, future care of the person with the neurodegenerative disease, personal concerns of study partners, and social concerns of study partners. Conclusions: Our results suggest that the experience of caregiving in neurodegenerative and cerebrovascular diseases is individualized and is not defined by diagnostic categories. Our findings highlight the importance of targeting ADL and neuropsychiatric symptoms with caregiver-personalized solutions

    Structural Brain Magnetic Resonance Imaging to Rule out Comorbid Pathology in the Assessment of Alzheimer\u27s Disease Dementia: Findings from the Ontario Neurodegenerative Disease Research Initiative (ONDRI) Study and Clinical Trials over the Past 10 Years

    Get PDF
    Background/Objective: Structural brain magnetic resonance imaging (MRI) is not mandatory in Alzheimer\u27s disease (AD) research or clinical guidelines. We aimed to explore the use of structural brain MRI in AD/mild cognitive impairment (MCI) trials over the past 10 years and determine the frequency with which inclusion of standardized structural MRI acquisitions detects comorbid vascular and non-vascular pathologies. Methods: We systematically searched ClinicalTrials.gov for AD clinical trials to determine their neuroimaging criteria and then used data from an AD/MCI cohort who underwent standardized MRI protocols, to determine type and incidence of clinically relevant comorbid pathologies. Results: Of 210 AD clinical trials, 105 (50%) included structural brain imaging in their eligibility criteria. Only 58 (27.6%) required MRI. 16,479 of 53,755 (30.7%) AD participants were in trials requiring MRI. In the observational AD/MCI cohort, 141 patients met clinical criteria; 22 (15.6%) had relevant MRI findings, of which 15 (10.6%) were exclusionary for the study. Discussion: In AD clinical trials over the last 10 years, over two-thirds of participants could have been enrolled without brain MRI and half without even a brain CT. In a study sample, relevant comorbid pathology was found in 15% of participants, despite careful screening. Standardized structural MRI should be incorporated into NIA-AA diagnostic guidelines (when available) and research frameworks routinely to reduce diagnostic heterogeneity

    Dopamine D2 receptor occupancy and cognition in schizophrenia : analysis of the CATIE data

    Get PDF
    Introduction: Antipsychotic drugs exert antipsychotic effects by blocking dopamine D2 receptors in the treatment of schizophrenia. However, effects of D2 receptor blockade on neurocognitive function still remain to be elucidated. The objective of this analysis was to evaluate impacts of estimated dopamine D2 receptor occupancy with antipsychotic drugs on several domains of neurocognitive function in patients with schizophrenia in the Clinical Antipsychotic Trials in Intervention Effectiveness (CATIE) trial. Methods: The dataset from the CATIE trial was used in the present analysis. Data were extracted from 410 subjects who were treated with risperidone, olanzapine, or ziprasidone, received assessments for neurocognitive functions (verbal memory, vigilance, processing speed, reasoning, and working memory) and psychopathology, and provided plasma samples for the measurement of plasma antipsychotic concentrations. D2 receptor occupancy levels on the day of neurocognitive assessment were estimated from plasma antipsychotic concentrations, using population pharmacokinetic analysis and our recently developed model. A multivariate general linear model was used to examine effects of clinical and demographic characteristics, including estimated D2 occupancy levels, on neurocognitive functions. Results: D2 occupancy levels showed significant associations with the vigilance and the summary scores. Neurocognitive functions, including vigilance, were especially impaired in subjects who showed D2 receptor occupancy level of >77%. Discussion: These findings suggest a nonlinear relationship between prescribed antipsychotic doses and overall neurocognitive function and vigilance. This study shows that D2 occupancy above approximately 80% not only increases the risk for extrapyramidal side effects as consistently reported in the literature but also increases the risk for cognitive impairment.peer-reviewe

    Targeted copy number variant identification across the neurodegenerative disease spectrum

    Get PDF
    Background: Although genetic factors are known to contribute to neurodegenerative disease susceptibility, there remains a large amount of heritability unaccounted for across the diagnoses. Copy number variants (CNVs) contribute to these phenotypes, but their presence and influence on disease state remains relatively understudied. Methods: Here, we applied a depth of coverage approach to detect CNVs in 80 genes previously associated with neurodegenerative disease within participants of the Ontario Neurodegenerative Disease Research Initiative (n = 519). Results: In total, we identified and validated four CNVs in the cohort, including: (1) a heterozygous deletion of exon 5 in OPTN in an Alzheimer\u27s disease participant; (2) a duplication of exons 1–5 in PARK7 in an amyotrophic lateral sclerosis participant; (3) a duplication of \u3e3 Mb, which encompassed ABCC6, in a cerebrovascular disease (CVD) participant; and (4) a duplication of exons 7–11 in SAMHD1 in a mild cognitive impairment participant. We also identified 43 additional CNVs that may be candidates for future replication studies. Conclusion: The identification of the CNVs suggests a portion of the apparent missing heritability of the phenotypes may be due to these structural variants, and their assessment is imperative for a thorough understanding of the genetic spectrum of neurodegeneration

    Alzheimer's “Prevention” vs. “Risk Reduction”: Transcending Semantics for Clinical Practice

    Get PDF
    The terms “prevention” and “risk reduction” are often used interchangeably in medicine. There is considerable debate, however, over the use of these terms in describing interventions that aim to preserve cognitive health and/or delay disease progression of Alzheimer's disease (AD) for patients seeking clinical care. Furthermore, it is important to distinguish between Alzheimer's disease prevention and Alzheimer's dementia prevention when using these terms. While prior studies have codified research-based criteria for the progressive stages of AD, there are no clear clinical consensus criteria to guide the use of these terms for physicians in practice. A clear understanding of the implications of each term will help guide clinical practice and clinical research. The authors explore the semantics and appropriate use of the terms “prevention” and “risk reduction” as they relate to AD in clinical practice
    corecore