8 research outputs found

    Models of classroom assessment for course-based research experiences

    Get PDF
    Course-based research pedagogy involves positioning students as contributors to authentic research projects as part of an engaging educational experience that promotes their learning and persistence in science. To develop a model for assessing and grading students engaged in this type of learning experience, the assessment aims and practices of a community of experienced course-based research instructors were collected and analyzed. This approach defines four aims of course-based research assessment—(1) Assessing Laboratory Work and Scientific Thinking; (2) Evaluating Mastery of Concepts, Quantitative Thinking and Skills; (3) Appraising Forms of Scientific Communication; and (4) Metacognition of Learning—along with a set of practices for each aim. These aims and practices of assessment were then integrated with previously developed models of course-based research instruction to reveal an assessment program in which instructors provide extensive feedback to support productive student engagement in research while grading those aspects of research that are necessary for the student to succeed. Assessment conducted in this way delicately balances the need to facilitate students’ ongoing research with the requirement of a final grade without undercutting the important aims of a CRE education

    Digitized tree cover 2014

    No full text
    This shapefile consists of polygons representing tree cover in 150 x 150 m plots. Columns in the attribute table indicate the year during which the aerial image used to digitize tree cover was acquired (2014), the tree cover type (Dispersed, Fallow, Riparian, Fence, and Forest), and the area of each polygon (in square meters)

    Data from: Divergent rates of change between tree cover types in a tropical pastoral region

    No full text
    Context: Forest cover change analyses have revealed net forest gain in many tropical regions. While most analyses have focused solely on forest cover, trees outside forests are vital components of landscape integrity. Quantifying regional-scale patterns of tree cover change, including non-forest trees, could benefit forest and landscape restoration (FLR) efforts. Objectives: We analyzed tree cover change in Southwestern Panama to quantify: 1) patterns of change from 1998-2014, 2) differences in rates of change between forest and non-forest classes, and 3) the relative importance of social-ecological predictors of tree cover change between classes. Methods: We digitized tree cover classes, including dispersed trees, live fences, riparian forest, and forest, in very high resolution images from 1998-2014. We then applied hurdle models to relate social-ecological predictors to the probability and amount of tree cover gain. Results: All tree cover classes increased in extent, but gains were highly variable between classes. Non-forest tree cover accounted for 21% of tree cover gains, while riparian trees constituted 31% of forest cover gains. Drivers of tree cover change varied widely between classes, with opposite impacts of some social-ecological predictors on non-forest and forest cover. Conclusions: We demonstrate that key drivers of forest cover change, including topography, road distance and historical forest cover, do not explain rates of non-forest tree cover change. Consequently, predictions from medium-resolution forest cover change analyses may not apply to finer-scale patterns of tree cover. We highlight the opportunity for FLR projects to target tree cover classes adapted to local social and ecological conditions

    Digitized tree cover 1998

    No full text
    This shapefile consists of polygons representing tree cover in 150 x 150 m plots. Columns in the attribute table indicate the year during which the aerial image used to digitize tree cover was acquired (1998), the tree cover type (Dispersed, Fallow, Riparian, Fence, and Forest), and the area of each polygon (in square meters)

    Sampling squares

    No full text
    This shapefile represents sampling units for measuring tree cover. Each sampling unit is a 150 x 150 m square. Squares were stratified to properties using a cadastral data set, such that one square represents one property. Within the sampling unit, all tree cover was digitized and categorized into tree cover types. Areas without tree cover were not digitized

    A regionally varying habitat model to inform management for greater sage-grouse persistence across their range

    No full text
    Identifying habitat needs for species with large distributions is challenging because species-habitat associations may vary across scales and regions (spatial nonstationarity). Furthermore, management efforts often cross jurisdictional boundaries, complicating the development of cohesive conservation strategies among management entities. The greater sage-grouse (Centrocercus urophasianus) is a rapidly declining species that spans 11 U.S. states and responds to habitat conditions across a wide range of spatial scales and regions. Allowing for regional variance in species-habitat associations and suitability predictions could systematically identify important habitats at levels relevant to management. We collaboratively developed a model with Bureau of Land Management (BLM) biologists that: (1) evaluated the scale of effect for different environmental covariates; (2) accounted for regional differences in population-level responses; and (3) predicted probabilities of persistence across the U.S. occupied range. We modeled range-wide lek persistence data (6615 communal breeding sites classified as active or inactive) as a function of environmental covariates. Environmental covariates included sagebrush cover, pinyon-juniper cover, topography, precipitation, point and line disturbance densities, and landscape configuration metrics. Our model treated habitat assessment areas – regionally delineated by BLM biologists – as random intercepts and slopes that allowed for geographic variation in species-habitat associations and predicted probabilities of lek persistence. Our final model indicated support for 12 environmental covariates predicting lek persistence at scales extending between 1- to 15-km radii from lek centers, and a covariate measuring distance to the occupied range boundary. Five of these covariates showed significant regionally varying responses: sagebrush clumpiness (a measure of habitat aggregation), pinyon-juniper cover, point disturbance of anthropogenic features such as energy infrastructure and communication towers, elevation, and a topographic index associated with mesic habitats. This spatial nonstationarity indicates unitary range-wide recommendations, or rules-of-thumb with respect to their effects on lek persistence, may be problematic for these environmental conditions. For covariates that did not include random slopes, and which were potentially amenable to management actions, we found that leks were predicted to become extirpated when sagebrush cover fell below 9.6 % (summarized at the 3.2-km radius extent), and the proportion of classified sagebrush habitat fell below 0.7 (1-km). We produced a continuous predictive probability surface of lek persistence which we binned based on model sensitivity thresholds to produce habitat quality categories. The highest quality habitat (capturing 50 % of active leks) covered 25.5 % of the occupied range, while the combined lowest through highest quality habitats (capturing 95 % of active leks) covered 65.0 %. Accommodating regional environmental differences in models that are relevant to habitat management planning will help ensure their applicability to targeted goals. Continuous collaboration between modelers and land managers early in the modeling process increases the likelihood of this outcome
    corecore