78 research outputs found

    Identification of conditions for nanostructured burnishing and subsurface shear instability

    Get PDF
    Numerical as well as physical modeling of nanostructuring burnishing has been carried out to find out the process parameter limiting levels, which serve both to provide appropriate surface quality and positive deformation-induced structural modification of the subsurface layers as well as to avoid shear instability in the subsurface layers of burnished metal. The effects of load, burnishing speed, tool tip material, tool pass number and tribological transfer on the burnished surface roughness have been elucidated by the example of quenched and tempered steel 20X (EN 20Cr4). It was shown that overloading results in quasi-viscous flow of the subsurface material, deterioration of the surface and ruining the positive effect of nanostructuring burnishing

    Fast Traveling-Wave Reactor of the Channel Type

    Full text link
    The main aim of this paper is to solve the technological problems of the TWR based on the technical concept described in our priority of invention reference, which makes it impossible, in particular, for the fuel claddings damaging doses of fast neutrons to excess the ~200 dpa limit. Thus the essence of the technical concept is to provide a given neutron flux at the fuel claddings by setting the appropriate speed of the fuel motion relative to the nuclear burning wave. The basic design of the fast uranium-plutonium nuclear traveling-wave reactor with a softened neutron spectrum is developed, which solves the problem of the radiation resistance of the fuel claddings material.Comment: 18 pages, 5 figures, 2 table

    Legibility of Textbooks: A Literature Review

    Get PDF
    AbstractThe purpose of the study was to analyse findings in the field of the textbooks’ legibility, readability and visual word recognition. The paper focuses on the most significant findings for comprehending the texts’ spatial characteristics during reading, word and letter recognition. The aim of the study was to analyse the factors which have induced inconsistencies between the findings acquired by scientists, as well as to compare findings which continually lead to progression in this field

    Eurasian perspective

    Get PDF
    Reproducing the tree cover changes throughout the Holocene is a challenge for land surface–atmosphere models. Here, results of a transient Holocene simulation of the coupled climate–carbon cycle model, CLIMBER2-LPJ, driven by changes in orbital forcing, are compared with pollen data and pollen-based reconstructions for several regions of Eurasia in terms of changes in tree fraction. The decline in tree fraction in the high latitudes suggested by data and model simulations is driven by a decrease in summer temperature over the Holocene. The cooler and drier trend at the eastern side of the Eurasian continent, in Mongolia and China, also led to a decrease in tree cover in both model and data. In contrast, the Holocene trend towards a cooler climate in the continental interior (Kazakhstan) is accompanied by an increase in woody cover. There a relatively small reduction in precipitation was likely compensated by lower evapotranspiration in comparison to the monsoon-affected regions. In general the model-data comparison demonstrates that climate-driven changes during the Holocene result in a non-homogeneous pattern of tree cover change across the Eurasian continent. For the Eifel region in Germany, the model suggests a relatively moist and cool climate and dense tree cover. The Holzmaar pollen record agrees with the model for the intervals 8–3 ka and 1.7–1.3 ka BP, but suggests great reduction of the tree cover 3–2 ka and after 1.3 ka BP, when highly developed settlements and agriculture spread in the region

    Higgs boson decay into heavy quarks and heavy leptons: higher order corrections

    Full text link
    Theoretical predictions for the decay width of Standard Model Higgs boson into bottom quarks and tau-leptons, in the case when M_H< 2M_W, are briefly reviewed. The effects of higher order perturbative QCD (up to alpha_s^4-level) and QED corrections are considered. The uncertainties of the decay width of Higgs boson into bb and tau+tau- are discussed.Comment: 5 pages, 2 figures, invited talk at the 3rd Joint International "Hadron Structure - 2009" (HS'09) Workshop, Tatranska Strba, Slovakia, Aug. 30 - Sept. 3, 200

    On Form Factors in nested Bethe Ansatz systems

    Full text link
    We investigate form factors of local operators in the multi-component Quantum Non-linear Schr\"odinger model, a prototype theory solvable by the so-called nested Bethe Ansatz. We determine the analytic properties of the infinite volume form factors using the coordinate Bethe Ansatz solution and we establish a connection with the finite volume matrix elements. In the two-component models we derive a set of recursion relations for the "magnonic form factors", which are the matrix elements on the nested Bethe Ansatz states. In certain simple cases (involving states with only one spin-impurity) we obtain explicit solutions for the recursion relations.Comment: 34 pages, v2 (minor modifications
    corecore