14 research outputs found

    A study of surface water pollution with azithromycin in Ukraine

    Get PDF
    Introduction: Water pollution with antibiotics plays a key role in the formation and spread of antibiotic resistance, which threatens humanity and the environment as a whole.Aim: The purpose of our work was to develop a method for determining azithromycin in wastewater and surface water using the thin-layer chromatography method.Materials and Methods: The developed technique was tested in the wastewater of Zolochiv district of Kharkiv region.Results and Discussion: Using conventional analytical scales and universal chromatography in thin layers of a sorbent, it is possible to identify azithromycin with a water concentration of ≥ 30 µg/mL without complex and expensive equipment, such as HPLC or LC/MS/MS. The results showed that the concentration of azithromycin is less than 30 µg/mL

    The reorganization of model membranes by Gb3-binding lectins and the bacterium Pseudomonas aeruginosa

    No full text
    L'interaction des glycosphingolipides de la membrane plasmique avec les protéines de liaison aux glucides (lectines) est d'une importance vitale pour l'infection de la cellule hôte par divers virus et bactéries. Dans ce travail, nous avons exploré l’interaction des lectines LecA de la bactérie P. aeruginosa et de la sous-unité B de la toxine Shiga (StxB) de S. dysenteriae avec son récepteur à membrane plasmatique, le globotriaosylcéramide (Gb3). De plus, nous avons étudié l'interaction de la bactérie complète P. aeruginosa avec Gb3. Afin de déchiffrer l'interaction lectine-Gb3 en l'absence d'autres composants cellulaires, nous avons utilisé les systèmes de membrane artificielle - vésicules unilamellaires géantes (GUV) et bicouches lipidiques supportées (SLB). Nous avons observé la liaison de la lectine en utilisant différents modes de microscopie à fluorescence (confocal, TIRF, etc.). Nous examinons la liaison des deux lectines aux domaines membranaires de différents ordres et compositions. Nous avons constaté que StxB préfère des domaines membranaires plus ordonnés alors que LecA est moins préférentiel. De plus, les deux lectines induisent la réorganisation des domaines membranaires: StxB stabilise les domaines ordonnés, les réduit et induit la formation des nouveaux domaines ordonnés. D'autre part, LecA ainsi que la bactérie P. aeruginosa induisent la dissolution des domaines ordonnés. Nous pensons que ces processus de réorganisation membranaire sont cruciaux pour l’infection bactérienne.The interaction of plasma membrane glycosphingolipids with the carbohydrate binding proteins (lectins) is of vital importance for the infection of the host cell by various viruses and bacteria. In this work, we explored the interaction of the lectins LecA from the bacterium P. aeruginosa and B subunit of Shiga toxin (StxB) from S. dysenteriae with its plasma membrane receptor globotriaosylceramide (Gb3). Moreover, we studied the interaction of the complete bacterium P. aeruginosa with Gb3. In order to decipher the lectin-Gb3 interaction in absence of other cellular components we employed the artificial membrane systems – Giant unilamellar vesicles (GUVs) and Supported lipid bilayers (SLBs). We observed the lectin binding using different modes of fluorescence microscopy (confocal, TIRF, etc…). We examine the binding of both lectins to the membrane domains of different ordere and composition. We found that StxB prefers more ordered membrane domains whereas LecA is less preferential. Moreover, both lectins induce the reorganization of the membrane domains: StxB stabilizes ordered domains, shrinks them and induces the formation of the novel ordered domains. On the other hand LecA, as well as the bacterium P. aeruginosa induce the dissolution of the ordered domains. We believe, these membrane reorganization processes are crucial for the bacterial infection

    How Does Liquid-Liquid Phase Separation in Model Membranes Reflect Cell Membrane Heterogeneity?

    No full text
    Although liquid–liquid phase separation of cytoplasmic or nuclear components in cells has been a major focus in cell biology, it is only recently that the principle of phase separation has been a long-standing concept and extensively studied in biomembranes. Membrane phase separation has been reconstituted in simplified model systems, and its detailed physicochemical principles, including essential phase diagrams, have been extensively explored. These model membrane systems have proven very useful to study the heterogeneity in cellular membranes, however, concerns have been raised about how reliably they can represent native membranes. In this review, we will discuss how phase-separated membrane systems can mimic cellular membranes and where they fail to reflect the native cell membrane heterogeneity. We also include a few humble suggestions on which phase-separated systems should be used for certain applications, and which interpretations should be avoided to prevent unreliable conclusions

    Rôles et mécanismes des Lectines à Gb3 et de Pseudomonas aeruginosa sur la réorganisation de la membrane plasmique

    No full text
    The interaction of plasma membrane glycosphingolipids with the carbohydrate binding proteins (lectins) is of vital importance for the infection of the host cell by various viruses and bacteria. In this work, we explored the interaction of the lectins LecA from the bacterium P. aeruginosa and B subunit of Shiga toxin (StxB) from S. dysenteriae with its plasma membrane receptor globotriaosylceramide (Gb3). Moreover, we studied the interaction of the complete bacterium P. aeruginosa with Gb3. In order to decipher the lectin-Gb3 interaction in absence of other cellular components we employed the artificial membrane systems – Giant unilamellar vesicles (GUVs) and Supported lipid bilayers (SLBs). We observed the lectin binding using different modes of fluorescence microscopy (confocal, TIRF, etc…). We examine the binding of both lectins to the membrane domains of different ordere and composition. We found that StxB prefers more ordered membrane domains whereas LecA is less preferential. Moreover, both lectins induce the reorganization of the membrane domains: StxB stabilizes ordered domains, shrinks them and induces the formation of the novel ordered domains. On the other hand LecA, as well as the bacterium P. aeruginosa induce the dissolution of the ordered domains. We believe, these membrane reorganization processes are crucial for the bacterial infection.L'interaction des glycosphingolipides de la membrane plasmique avec les protéines de liaison aux glucides (lectines) est d'une importance vitale pour l'infection de la cellule hôte par divers virus et bactéries. Dans ce travail, nous avons exploré l’interaction des lectines LecA de la bactérie P. aeruginosa et de la sous-unité B de la toxine Shiga (StxB) de S. dysenteriae avec son récepteur à membrane plasmatique, le globotriaosylcéramide (Gb3). De plus, nous avons étudié l'interaction de la bactérie complète P. aeruginosa avec Gb3. Afin de déchiffrer l'interaction lectine-Gb3 en l'absence d'autres composants cellulaires, nous avons utilisé les systèmes de membrane artificielle - vésicules unilamellaires géantes (GUV) et bicouches lipidiques supportées (SLB). Nous avons observé la liaison de la lectine en utilisant différents modes de microscopie à fluorescence (confocal, TIRF, etc.). Nous examinons la liaison des deux lectines aux domaines membranaires de différents ordres et compositions. Nous avons constaté que StxB préfère des domaines membranaires plus ordonnés alors que LecA est moins préférentiel. De plus, les deux lectines induisent la réorganisation des domaines membranaires: StxB stabilise les domaines ordonnés, les réduit et induit la formation des nouveaux domaines ordonnés. D'autre part, LecA ainsi que la bactérie P. aeruginosa induisent la dissolution des domaines ordonnés. Nous pensons que ces processus de réorganisation membranaire sont cruciaux pour l’infection bactérienne

    The reorganization of model membranes by Gb3-binding lectins and the bacterium Pseudomonas aeruginosa

    No full text
    L'interaction des glycosphingolipides de la membrane plasmique avec les protéines de liaison aux glucides (lectines) est d'une importance vitale pour l'infection de la cellule hôte par divers virus et bactéries. Dans ce travail, nous avons exploré l’interaction des lectines LecA de la bactérie P. aeruginosa et de la sous-unité B de la toxine Shiga (StxB) de S. dysenteriae avec son récepteur à membrane plasmatique, le globotriaosylcéramide (Gb3). De plus, nous avons étudié l'interaction de la bactérie complète P. aeruginosa avec Gb3. Afin de déchiffrer l'interaction lectine-Gb3 en l'absence d'autres composants cellulaires, nous avons utilisé les systèmes de membrane artificielle - vésicules unilamellaires géantes (GUV) et bicouches lipidiques supportées (SLB). Nous avons observé la liaison de la lectine en utilisant différents modes de microscopie à fluorescence (confocal, TIRF, etc.). Nous examinons la liaison des deux lectines aux domaines membranaires de différents ordres et compositions. Nous avons constaté que StxB préfère des domaines membranaires plus ordonnés alors que LecA est moins préférentiel. De plus, les deux lectines induisent la réorganisation des domaines membranaires: StxB stabilise les domaines ordonnés, les réduit et induit la formation des nouveaux domaines ordonnés. D'autre part, LecA ainsi que la bactérie P. aeruginosa induisent la dissolution des domaines ordonnés. Nous pensons que ces processus de réorganisation membranaire sont cruciaux pour l’infection bactérienne.The interaction of plasma membrane glycosphingolipids with the carbohydrate binding proteins (lectins) is of vital importance for the infection of the host cell by various viruses and bacteria. In this work, we explored the interaction of the lectins LecA from the bacterium P. aeruginosa and B subunit of Shiga toxin (StxB) from S. dysenteriae with its plasma membrane receptor globotriaosylceramide (Gb3). Moreover, we studied the interaction of the complete bacterium P. aeruginosa with Gb3. In order to decipher the lectin-Gb3 interaction in absence of other cellular components we employed the artificial membrane systems – Giant unilamellar vesicles (GUVs) and Supported lipid bilayers (SLBs). We observed the lectin binding using different modes of fluorescence microscopy (confocal, TIRF, etc…). We examine the binding of both lectins to the membrane domains of different ordere and composition. We found that StxB prefers more ordered membrane domains whereas LecA is less preferential. Moreover, both lectins induce the reorganization of the membrane domains: StxB stabilizes ordered domains, shrinks them and induces the formation of the novel ordered domains. On the other hand LecA, as well as the bacterium P. aeruginosa induce the dissolution of the ordered domains. We believe, these membrane reorganization processes are crucial for the bacterial infection

    Lipid self-assembly and lectin-induced reorganization of the plasma membrane

    No full text
    The plasma membrane represents an outstanding example of self-organization in biology. It plays a vital role in protecting the integrity of the cell interior and regulates meticulously the import and export of diverse substances. Its major building blocks are proteins and lipids, which self-assemble to a fluid lipid bilayer driven mainly by hydrophobic forces. Even if the plasma membrane appears—globally speaking—homogeneous at physiological temperatures, the existence of specialized nano- to micrometre-sized domains of raft-type character within cellular and synthetic membrane systems has been reported. It is hypothesized that these domains are the origin of a plethora of cellular processes, such as signalling or vesicular trafficking. This review intends to highlight the driving forces of lipid self-assembly into a bilayer membrane and the formation of small, transient domains within the plasma membrane. The mechanisms of self-assembly depend on several factors, such as the lipid composition of the membrane and the geometry of lipids. Moreover, the dynamics and organization of glycosphingolipids into nanometre-sized clusters will be discussed, also in the context of multivalent lectins, which cluster several glycosphingolipid receptor molecules and thus create an asymmetric stress between the two membrane leaflets, leading to tubular plasma membrane invaginations. This article is part of the theme issue ‘Self-organization in cell biology’

    Lectin-mediated protocell crosslinking to mimic cell-cell junctions and adhesion

    No full text
    International audienceCell adhesion is a crucial feature of all multicellular organisms, as it allows cells to organise themselves into tissues to carry out specific functions. Here, we present a mimetic approach that uses multivalent lectins with opposing binding sites to crosslink glycan-functionalised giant unilamellar vesicles. The crosslinking process drives the progression from contact puncta into elongated protocellular junctions, which form the vesicles into polygonal clusters resembling tissues. Due to their carbohydrate specificity, different lectins can be engaged in parallel with both natural and synthetic glycoconjugates to generate complex interfaces with distinct lectin domains. In addition, the formation of protocellular junctions can be combined with adhesion to a functionalised support by other ligand-receptor interactions to render increased stability against fluid flow. Furthermore, we consider that adhesion is a complex process of attraction and repulsion by doping the vesicles with a PEG-modified lipid, and demonstrate a dosedependent decrease of lectin binding and formation of protocellular junctions. We suggest that the engineering of prototissues through lectin-glycan interactions is an important step towards synthetic minimal tissues and in designing artificial systems to reconstruct the fundamental functions of biology

    A Label-Free Optical Detection of Pathogens in Isopropanol as a First Step towards Real-Time Infection Prevention

    No full text
    The detection of pathogens is a major public health issue. Every year, thousands of people die because of nosocomial infections. It is therefore important to be able to detect possible outbreaks as early as possible, especially in the hospital environment. Various pathogen detection techniques have already been demonstrated. However, most of them require expensive and specific equipment, and/or complex protocols, which, most of the time, involve biochemical reaction and labelling steps. In this paper, a new method that combines microscopic imaging and machine learning is described. The main benefits of this approach are to be low-cost, label-free and easy to integrate in any suitable medical device, such as hand hygiene dispensers. The suitability of this pathogen detection method is validated using four bacteria, both in PBS (Phosphate Buffered Saline) and in isopropanol. In particular, we demonstrated an efficient pathogenic detection that is sensible to changes in the composition of a mixture of pathogens, even in alcohol-based solutions
    corecore