121 research outputs found

    Materials have driven the historical development of the Tennis Racket

    Get PDF
    © 2019 by the authors. The tennis racket has developed since the origins of Lawn Tennis in the 1870s. This study investigated how the tennis racket developed from 1874 to 2017, using measurements and material classifications for 525 samples. Racket measurements covered geometric, inertial and dynamic properties, and the number of strings. Rackets predating 1970 were mainly wooden, and typically characterised by head areas below 0.05 m2, masses over 350 g and natural frequencies below 120 Hz. Rackets from the 1970s were made from wood, metal and fibre-polymer composites, with most postdating 1980 made from fibre-polymer composites with a larger head, lower mass and higher natural frequency than their predecessors. Principal component analysis was used to reduce the dimensionality of the number of variables. Principal component one (PCA1) accounted for 35% of the variance in the measured racket properties, and was found to be significantly affected by material. Head width was best correlated with principal component one (r = 0.897, p < 0.001), followed by head length (r = 0.841, p < 0.001) and natural frequency (r = 0.813, p < 0.001). Early rackets were constrained by the limitations of wood, and the move to composites, which began in the 1970s, allowed this observed increase in head size and natural frequency. As material development has been a major driver of racket design in the past, we propose that new materials and manufacturing techniques, like additively manufactured composites, could further improve the tennis racket. The measurement techniques described here can be used to monitor developments in racket design

    Improved simulation of isoprene oxidation chemistry with the ECHAM5/MESSy chemistry-climate model: lessons from the GABRIEL airborne field campaign

    Get PDF
    The GABRIEL airborne field measurement campaign, conducted over the Guyanas in October 2005, produced measurements of hydroxyl radical (OH) concentration which are significantly higher than can be simulated using current generation models of atmospheric chemistry. Based on the hypothesis that this &quot;missing OH&quot; is due to an as-yet undiscovered mechanism for recycling OH during the oxidation chain of isoprene, we determine that an OH recycling of about 40–50% (compared with 5–10% in current generation isoprene oxidation mechanisms) is necessary in order for our modelled OH to approach the lower error bounds of the OH observed during GABRIEL. Such a large amount of OH in our model leads to unrealistically low mixing ratios of isoprene. In order for our modelled isoprene mixing ratios to match those observed during the campaign, we also require that the effective rate constant for the reaction of isoprene with OH be reduced by about 50% compared with the lower bound of the range recommended by IUPAC. We show that a reasonable explanation for this lower effective rate constant could be the segregation of isoprene and OH in the mixed layer. Our modelling results are consistent with a global, annual isoprene source of about 500 Tg(C) yr&lt;sup&gt;&amp;minus;1&lt;/sup&gt;, allowing experimentally derived and established isoprene flux rates to be reconciled with global models

    Autoimmunity in Long Covid and POTS.

    Get PDF
    Orthostatic intolerance and other autonomic dysfunction syndromes are emerging as distinct symptom clusters in Long Covid. Often accompanying these are common, multi-system constitutional features such as fatigue, malaise and skin rashes which can signify generalized immune dysregulation. At the same time, multiple autoantibodies are identified in both Covid-related autonomic disorders and non-Covid autonomic disorders, implying a possible underlying autoimmune pathology. The lack of specificity of these findings precludes direct interpretations of cause and association, but their prevalence with its supporting evidence is compelling

    The linear ubiquitin chain assembly complex regulates TRAIL-induced gene activation and cell death.

    Get PDF
    The linear ubiquitin chain assembly complex (LUBAC) is the only known E3 ubiquitin ligase which catalyses the generation of linear ubiquitin linkages de novo LUBAC is a crucial component of various immune receptor signalling pathways. Here, we show that LUBAC forms part of the TRAIL-R-associated complex I as well as of the cytoplasmic TRAIL-induced complex II In both of these complexes, HOIP limits caspase-8 activity and, consequently, apoptosis whilst being itself cleaved in a caspase-8-dependent manner. Yet, by limiting the formation of a RIPK1/RIPK3/MLKL-containing complex, LUBAC also restricts TRAIL-induced necroptosis. We identify RIPK1 and caspase-8 as linearly ubiquitinated targets of LUBAC following TRAIL stimulation. Contrary to its role in preventing TRAIL-induced RIPK1-independent apoptosis, HOIP presence, but not its activity, is required for preventing necroptosis. By promoting recruitment of the IKK complex to complex I, LUBAC also promotes TRAIL-induced activation of NF-κB and, consequently, the production of cytokines, downstream of FADD, caspase-8 and cIAP1/2. Hence, LUBAC controls the TRAIL signalling outcome from complex I and II, two platforms which both trigger cell death and gene activation

    Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspase deficiency

    Get PDF
    Apoptosis represents a key anti-cancer therapeutic effector mechanism. During apoptosis, mitochondrial outer membrane permeabilization (MOMP) typically kills cells even in the absence of caspase activity. Caspase activity can also have a variety of unwanted consequences that include DNA damage. We therefore investigated whether MOMP-induced caspase-independent cell death (CICD) might be a better way to kill cancer cells. We find that cells undergoing CICD display potent pro-inflammatory effects relative to apoptosis. Underlying this, MOMP was found to stimulate NF-κB activity through the downregulation of inhibitor of apoptosis proteins. Strikingly, engagement of CICD displays potent anti-tumorigenic effects, often promoting complete tumour regression in a manner dependent on intact immunity. Our data demonstrate that by activating NF-κB, MOMP can exert additional signalling functions besides triggering cell death. Moreover, they support a rationale for engaging caspase-independent cell death in cell-killing anti-cancer therapies

    The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere

    No full text
    International audienceThe new Modular Earth Submodel System (MESSy) describes atmospheric chemistry and meteorological processes in a modular framework, following strict coding standards. It has been coupled to the ECHAM5 general circulation model, which has been slightly modified for this purpose. A 90-layer model version up to 0.01 hPa was used at T42 resolution (~2.8 latitude and longitude) to simulate the lower and middle atmosphere. The model meteorology has been tested to check the influence of the changes to ECHAM5 and the radiation interactions with the new representation of atmospheric composition. A Newtonian relaxation technique was applied in the tropospheric part of the domain to weakly nudge the model towards the analysed meteorology during the period 1998?2005. It is shown that the tropospheric wave forcing of the stratosphere in the model suffices to reproduce the Quasi-Biennial Oscillation and major stratospheric warming events leading e.g. to the vortex split over Antarctica in 2002. Characteristic features such as dehydration and denitrification caused by the sedimentation of polar stratospheric cloud particles and ozone depletion during winter and spring are simulated accurately, although ozone loss in the lower polar stratosphere is slightly underestimated. The model realistically simulates stratosphere-troposphere exchange processes as indicated by comparisons with satellite and in situ measurements. The evaluation of tropospheric chemistry presented here focuses on the distributions of ozone, hydroxyl radicals, carbon monoxide and reactive nitrogen compounds. In spite of minor shortcomings, mostly related to the relatively coarse T42 resolution and the neglect of interannual changes in biomass burning emissions, the main characteristics of the trace gas distributions are generally reproduced well. The MESSy submodels and the ECHAM5/MESSy1 model output are available through the internet on request

    Hydroxyl radicals in the tropical troposphere over the Suriname rainforest: comparison of measurements with the box model MECCA

    Get PDF
    As a major source region of the hydroxyl radical OH, the Tropics largely control the oxidation capacity of the atmosphere on a global scale. However, emissions of hydrocarbons from the tropical rainforest that react rapidly with OH can potentially deplete the amount of OH and thereby reduce the oxidation capacity. The airborne GABRIEL field campaign in equatorial South America (Suriname) in October 2005 investigated the influence of the tropical rainforest on the HOx budget (HOx = OH + HO2). The first observations of OH and HO2 over a tropical rainforest are compared to steady state concentrations calculated with the atmospheric chemistry box model MECCA. The important precursors and sinks for HOx chemistry, measured during the campaign, are used as constraining parameters for the simulation of OH and HO2. Significant underestimations of HOx are found by the model over land during the afternoon, with mean ratios of observation to model of 12.2 ± 3.5 and 4.1 ± 1.4 for OH and HO2, respectively. The discrepancy between measurements and simulation results is correlated to the abundance of isoprene. While for low isoprene mixing ratios (above ocean or at altitudes \u3e3 km), observation and simulation agree fairly well, for mixing ratios \u3e200 pptV (rainforest) the model tends to underestimate the HOx observations as a function of isoprene. Box model simulations have been performed with the condensed chemical mechanism of MECCA and with the detailed isoprene reaction scheme of MCM, resulting in similar results for HOx concentrations. Simulations with constrained HO2 concentrations show that the conversion from HO2 to OH in the model is too low. However, by neglecting the isoprene chemistry in the model, observations and simulations agree much better. An OH source similar to the strength of the OH sink via isoprene chemistry is needed in the model to resolve the discrepancy. A possible explanation is that the oxidation of isoprene by OH not only dominates the removal of OH but also produces it in a similar amount. Several additional reactions which directly produce OH have been implemented into the box model, suggesting that upper limits in producing OH are still not able to reproduce the observations (improvement by factors of ≈2.4 and ≈2 for OH and HO2, respectively). We determine that OH has to be recycled to 94% instead of the simulated 38% to match the observations, which is most likely to happen in the isoprene degradation process, otherwise additional sources are required

    Isoprene-derived secondary organic aerosol in the global aerosol–chemistry–climate model ECHAM6.3.0–HAM2.3–MOZ1.0

    Get PDF
    Within the framework of the global chemistry climate model ECHAM–HAMMOZ, a novel explicit coupling between the sectional aerosol model HAM-SALSA and the chemistry model MOZ was established to form isoprene-derived secondary organic aerosol (iSOA). Isoprene oxidation in the chemistry model MOZ is described by a semi-explicit scheme consisting of 147 reactions embedded in a detailed atmospheric chemical mechanism with a total of 779 reactions. Semi-volatile and low-volatile compounds produced during isoprene photooxidation are identified and explicitly partitioned by HAM-SALSA. A group contribution method was used to estimate their evaporation enthalpies and corresponding saturation vapor pressures, which are used by HAM-SALSA to calculate the saturation concentration of each iSOA precursor. With this method, every single precursor is tracked in terms of condensation and evaporation in each aerosol size bin. This approach led to the identification of dihydroxy dihydroperoxide (ISOP(OOH)2) as a main contributor to iSOA formation. Further, the reactive uptake of isoprene epoxydiols (IEPOXs) and isoprene-derived glyoxal were included as iSOA sources. The parameterization of IEPOX reactive uptake includes a dependency on aerosol pH value. This model framework connecting semi-explicit isoprene oxidation with explicit treatment of aerosol tracers leads to a global annual average isoprene SOA yield of 15&thinsp;% relative to the primary oxidation of isoprene by OH, NO3 and ozone. With 445.1&thinsp;Tg (392.1&thinsp;Tg&thinsp;C) isoprene emitted, an iSOA source of 138.5&thinsp;Tg (56.7&thinsp;Tg&thinsp;C) is simulated. The major part of iSOA in ECHAM–HAMMOZ is produced by IEPOX at 42.4&thinsp;Tg (21.0&thinsp;Tg&thinsp;C) and ISOP(OOH)2 at 78.0&thinsp;Tg (27.9&thinsp;Tg&thinsp;C). The main sink process is particle wet deposition, which removes 133.6 (54.7&thinsp;Tg&thinsp;C). The average iSOA burden reaches 1.4&thinsp;Tg (0.6&thinsp;Tg&thinsp;C) in the year 2012.</p

    Surface and Boundary Layer Exchanges of Volatile Organic Compounds, Nitrogen Oxides and Ozone During the GABRIEL Campaign

    Get PDF
    Abstract. We present an evaluation of sources, sinks and turbulent transport of nitrogen oxides, ozone and volatile organic compounds (VOC) in the boundary layer over French Guyana and Suriname during the October 2005 GABRIEL campaign by simulating observations with a single-column chemistry and climate model (SCM) along a zonal transect. Simulated concentrations of O3 and NO as well as NO2 photolysis rates over the forest agree well with observations when a small soil-biogenic NO emission flux was applied. This suggests that the photochemical conditions observed during GABRIEL reflect a pristine tropical low-NOx regime. The SCM uses a compensation point approach to simulate nocturnal deposition and daytime emissions of acetone and methanol and produces daytime boundary layer mixing ratios in reasonable agreement with observations. The area average isoprene emission flux, inferred from the observed isoprene mixing ratios and boundary layer height, is about half the flux simulated with commonly applied emission algorithms. The SCM nevertheless simulates too high isoprene mixing ratios, whereas hydroxyl concentrations are strongly underestimated compared to observations, which can at least partly explain the discrepancy. Furthermore, the model substantially overestimates the isoprene oxidation products methlyl vinyl ketone (MVK) and methacrolein (MACR) partly due to a simulated nocturnal increase due to isoprene oxidation. This increase is most prominent in the residual layer whereas in the nocturnal inversion layer we simulate a decrease in MVK and MACR mixing ratios, assuming efficient removal of MVK and MACR. Entrainment of residual layer air masses, which are enhanced in MVK and MACR and other isoprene oxidation products, into the growing boundary layer poses an additional sink for OH which is thus not available for isoprene oxidation. Based on these findings, we suggest pursuing measurements of the tropical residual layer chemistry with a focus on the nocturnal depletion of isoprene and its oxidation products.JRC.H.2-Climate chang
    • …
    corecore