20 research outputs found

    Compilation of a new bathymetric dataset of South Georgia

    Get PDF
    We introduce a new bathymetric compilation of the area around South Georgia in the Southern Ocean. Using a variety of data sources including multi and single-beam swath bathymetry we have constructed a gridded bathymetric dataset of the shelf and near-shelf sea-floor areas. The grid has been constructed using a layered hierarchy dependent upon accuracy of each dataset. The spikes and errors have been checked both manually and with a novel semi-automated process. We discuss the resulting bathymetry and the potential uses of the new datase

    Flow and retreat of the Late Quaternary Pine Island-Thwaites palaeo-ice stream, West Antarctica

    Get PDF
    Multibeam swath bathymetry and sub-bottom profiler data are used to establish constraints on the flow and retreat history of a major palaeo-ice stream that carried the combined discharge from the parts of the West Antarctic Ice Sheet now occupied by the Pine Island and Thwaites glacier basins. Sets of highly elongated bedforms show that, at the last glacial maximum, the route of the Pine Island-Thwaites palaeo-ice stream arced north-northeast following a prominent cross-shelf trough. In this area, the grounding line advanced to within similar to 68 km of, and probably reached, the shelf edge. Minimum ice thickness is estimated at 715 m on the outer shelf, and we estimate a minimum ice discharge of similar to 108 km(3) yr(-1) assuming velocities similar to today's Pine Island glacier (similar to 2.5 km yr(-1)). Additional bed forms observed in a trough northwest of Pine Island Bay likely formed via diachronous ice flows across the outer shelf and demonstrate switching ice stream behavior. The "style" of ice retreat is also evident in five grounding zone wedges, which suggest episodic deglaciation characterized by halts in grounding line migration up-trough. Stillstands occurred in association with changes in ice bed gradient, and phases of inferred rapid retreat correlate to higher bed slopes, supporting theoretical studies that show bed geometry as a control on ice margin recession. However, estimates that individual wedges could have formed within several centuries still imply a relatively rapid overall retreat. Our findings show that the ice stream channeled a substantial fraction of West Antarctica's discharge in the past, just as the Pine Island and Thwaites glaciers do today

    Divergent flow of the West Antarctic Ice Sheet on the outer contintental shelf of the Amundsen Sea during the late Quaternary

    Get PDF
    Summary Understanding the past glacial history of regions undergoing potential rapid deglaciation is essential in order to estimate the possible threat of sea level rise. Recently acquired data have given new images of mega-scale glacial lineations on the sea floor of the Amundsen Sea, which provide us a new understanding of the direction of glacial flow on the continental shelf of the Amundsen Sea region. Two adjacent areas of seafloor on the outer shelf of the Amundsen Sea embayment exhibit remarkably different styles of glacial lineations, and allow the interpretation of a divergent glacial trough for the Pine Island Glacier during the last glacial maximum, whereas ice flow from the Abbot Ice Shelf probably converged with that from the Pine Island Glacier to the north of a grounding zone wedge

    Thermal and compositional structure of the subcontinental lithospheric mantle : derivation from shear wave seismic tomography

    No full text
    Seismic tomography can provide unique information on the structure of the subcontinental lithospheric mantle (SCLM), but seismic velocity reflects both temperature and composition. We present a methodology for evaluating and isolating the relative contributions of these effects, which produces maps of regional geotherm and broad compositional constraints on the SCLM from the inversion of shear wave (Vs) seismic tomography. This approach uses model geotherms quantized in steps of 2.5 mW/m2 and three mantle compositions corresponding to typical Archean, Proterozoic, and Phanerozoic SCLM. Starting from an assumed composition for a volume of SCLM, lithospheric density at surface pressure and temperature is calculated for each geotherm at each point; the optimum geotherm is taken as the one yielding a density closest to the mean value derived from mantle xenoliths (3.31 g/cm3), since density varies with composition. Results requiring densities or geotherms outside the known natural range of these parameters worldwide require the choice of a different mantle composition. This technique, applied iteratively to a 275 km × 275 km Vs model developed by S. Grand (University of Texas, Austin), results in maps of the geotherm and regional density, which allow interpretation of SCLM composition within broad limits. These results can then be compared with local (paleo)geotherms and data for mantle composition, derived from xenolith suites. Application of this technique to the SCLM beneath Africa, Siberia, and North America shows good correlation with regional geological features, xenolith data, and other geophysical data.20 page(s

    Establishing lichenometric ages for nineteenth- and twentieth-century glacier fluctuations on South Georgia (South Atlantic)

    No full text
    Glaciers in small mountain cirques on South Georgia respond rapidly and sensitively to changes in South Atlantic climate. The timing and rate of their deglaciation can be used to examine the impact that nineteenth- and twentieth-century climate change has had on the glacial dynamics and terrestrial ecosystems of South Georgia. As part of a reconnaissance study in Prince Olav Harbour (POH), South Georgia, we measured the size of lichens (Rhizocarpon Ram. em Th. Fr. subgenus. Rhizocarpon group) on ice-free moraine ridges around two small mountain cirques. Our aims were twofold: first, to provide age estimates for lichen colonization, and hence, deglaciation of the moraine ridges, and second, to examine the potential of applying lichenometry more widely to provide deglacial age constraints on South Georgia. In the absence of lichen age-size (dating) curves for South Georgia, we use long-term Rhizocarpon lichen growth-rates from recent studies on sub-Antarctic Islands and the western Antarctic Peninsula to calculate likely age estimates. These data suggest ice retreat from the two outermost moraines occurred between the end of the 'Little Ice Age' (post c. 1870) and the early twentieth century on South Georgia. Lichen colonization of the innermost moraines is probably related to glacier retreat during the second half of the twentieth century, which has been linked to a well-defined warming trend since c. 1950. Patterns of possible nineteenth- and twentieth-century glacial retreat identified in POH need to be tested further by establishing species- and site-specific lichen age-size (dating) curves for South Georgia, and by applying lichenometry to other mountain cirques across South Georgia

    Linkage Disequilibrium and Inference of Ancestral Recombination in 538 Single-Nucleotide Polymorphism Clusters across the Human Genome

    Get PDF
    The prospect of using linkage disequilibrium (LD) for fine-scale mapping in humans has attracted considerable attention, and, during the validation of a set of single-nucleotide polymorphisms (SNPs) for linkage analysis, a set of data for 4,833 SNPs in 538 clusters was produced that provides a rich picture of local attributes of LD across the genome. LD estimates may be biased depending on the means by which SNPs are first identified, and a particular problem of ascertainment bias arises when SNPs identified in small heterogeneous panels are subsequently typed in larger population samples. Understanding and correcting ascertainment bias is essential for a useful quantitative assessment of the landscape of LD across the human genome. Heterogeneity in the population recombination rate, ρ=4Nr, along the genome reflects how variable the density of markers will have to be for optimal coverage. We find that ascertainment-corrected ρ varies along the genome by more than two orders of magnitude, implying great differences in the recombinational history of different portions of our genome. The distribution of [Formula: see text] is unimodal, and we show that this is compatible with a wide range of mixtures of hotspots in a background of variable recombination rate. Although [Formula: see text] is significantly correlated across the three population samples, some regions of the genome exhibit population-specific spikes or troughs in ρ that are too large to be explained by sampling. This result is consistent with differences in the genealogical depth of local genomic regions, a finding that has direct bearing on the design and utility of LD mapping and on the National Institutes of Health HapMap project

    Sediment echosounding data files from the Amundsen Sea

    No full text
    The flow of ice streams, which account for most discharge from large ice sheets, is controlled by processes operating at their bed. Data from modern ice stream beds are difficult to obtain, but where ice advanced onto continental shelves during glacial periods extensive areas of the former bed can be imaged using modern swath sonar tools. We present new multibeam swath bathymetry data analyzed alongside sparse pre-existing data from the Amundsen Sea Embayment. The compilation is the most extensive, continuous area of multibeam data coverage yet obtained on the inner continental shelf of Antarctica. The data reveal streamlined subglacial bedforms that define a zone of paleo-ice stream convergence but, in contrast to previous models, do not show a simple down-flow progression of bedform types along paleo-ice stream troughs. We interpret high spatial variability of bedforms as indicating a complex mechanical and hydrodynamic regime at the former ice stream beds, consistent with observations from some modern ice streams. We conclude that care must be taken when using bedforms to infer paleo-ice stream velocities

    A consistent data set of Antarctic ice sheet topography, cavity geometry, and global bathymetry

    Get PDF
    Sub-ice shelf circulation and freezing/melting rates in ocean general circulation models depend critically on an accurate and consistent representation of cavity geometry. Existing global or pan-Antarctic data sets have turned out to contain various inconsistencies and inaccuracies. The goal of this work is to compile independent regional fields into a global data set. We use the S-2004 global 1-min bathymetry as the backbone and add an improved version of the BEDMAP topography (ALBMAP bedrock topography) for an area that roughly coincides with the Antarctic continental shelf. The position of the merging line is individually chosen in different sectors in order to get the best out of each data set. High-resolution gridded data for ice shelf topography and cavity geometry of the Amery, Fimbul, Filchner-Ronne, Larsen C and George VI Ice Shelves, and for Pine Island Glacier are carefully merged into the ambient ice and ocean topographies. Multibeam survey data for bathymetry in the former Larsen B cavity and the southeastern Bellingshausen Sea have been obtained from the data centers of Alfred Wegener Institute (AWI), British Antarctic Survey (BAS) and Lamont-Doherty Earth Observatory (LDEO), gridded, and blended into the existing bathymetry map. The resulting global 1-min topography data set (RTopo-1) contains maps for upper and lower ice surface heights, bedrock topography, and consistent masks for open ocean, grounded ice, floating ice, and bare land surface
    corecore