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The prospect of using linkage disequilibrium (LD) for fine-scale mapping in humans has attracted considerable
attention, and, during the validation of a set of single-nucleotide polymorphisms (SNPs) for linkage analysis, a set
of data for 4,833 SNPs in 538 clusters was produced that provides a rich picture of local attributes of LD across
the genome. LD estimates may be biased depending on the means by which SNPs are first identified, and a particular
problem of ascertainment bias arises when SNPs identified in small heterogeneous panels are subsequently typed
in larger population samples. Understanding and correcting ascertainment bias is essential for a useful quantitative
assessment of the landscape of LD across the human genome. Heterogeneity in the population recombination rate,

, along the genome reflects how variable the density of markers will have to be for optimal coverage. Wer p 4Nr
find that ascertainment-corrected r varies along the genome by more than two orders of magnitude, implying great
differences in the recombinational history of different portions of our genome. The distribution of is unimodal,r̂

and we show that this is compatible with a wide range of mixtures of hotspots in a background of variable
recombination rate. Although is significantly correlated across the three population samples, some regions of ther̂

genome exhibit population-specific spikes or troughs in r that are too large to be explained by sampling. This
result is consistent with differences in the genealogical depth of local genomic regions, a finding that has direct
bearing on the design and utility of LD mapping and on the National Institutes of Health HapMap project.

Introduction

Before we can assess the likely efficacy of finding genes
by genomewide scans for association with a SNP mark-
er, it is essential that the distribution of linkage disequi-
librium (LD) across the genome be quantified in more
than one target population. Several moderate efforts
have been reported that highlight some of the problems
and begin to illustrate some of the results of this LD
map. Huttley et al. (1999) used data on 5,048 STRs
scored in the CEPH families to infer LD within the
grandparental generation. They found several regions
of the genome in which significant LD spanned 11 Mb
and other large regions with very low LD. As forward-
thinking as their study was, it suffered from excessive
distances separating the STR markers, so it could iden-
tify only long-range LD. The magnitude and sudden-
ness of change of LD along a chromosome has been
noted by several studies (Eisenbarth et al. 2000; Tail-
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lon-Miller et al. 2000), a result implying that judicious
choice of markers could greatly improve the ratio of
power to cost in LD mapping. Reich et al. (2001) have
quantified the decay of LD across 19 clusters of five or
six SNPs, with each cluster spanning ∼160 kb. Their
study showed not only that were there regions of high
and low rates of decay of LD but also that population
samples from Nigeria generally had markedly less LD
than those from Sweden and Utah. Apart from a bias
introduced by the larger sample size of the Nigerians
(Weiss and Clark 2002), a key conclusion is that the
number of SNPs necessary for a genomewide LD map
would not be easy to estimate because of both of these
types of heterogeneity. More recently, it has become
popular to note that small population samples show a
pattern of LD that appears to be locally clustered (Daly
et al. 2001; Gabriel et al. 2002), a result widely inter-
preted as implying that fewer SNPs than originally
thought could be used to attain reasonable power in
genomewide LD mapping. Assessment of the mini-
mum number of SNPs needed for a whole-genome LD-
mapping study with acceptable power requires better
knowledge of the landscape of LD across the genome.
Examination of chromosome 22 at 15 kb resolution
(Dawson et al. 2002) and chromosome 19 at 6 kb res-
olution (Phillips et al. 2003) identified many regions of
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high LD, but there remain regions of unusually low LD
that will require large numbers of SNPs for coverage
by LD mapping.

In addition to the quantification and mapping of
genomic regions of high and low LD, it is essential that
the degree of heterogeneity in LD among human popula-
tions be understood before inferences about the general-
ity of LD associations with diseases can be made. It has
been appreciated for many years that the frequency of
genetic disorders varies widely across population groups,
and it follows that we expect that not all SNP associations
will be universal. We can ask whether, as a surrogate for
heterogeneity between SNPs and diseases, the pattern of
LD among SNPs is consistent across populations. Here,
too, there is a growing literature showing heterogeneity
among populations, with Africa tending to have low LD
and with populations that are more derived or isolated
having the highest LD (Dunning et al. 2000; Kidd et al.
2000; Reich et al. 2001; Bonnen et al. 2002).

A number of population genetic inferences can be
drawn from surveys of multilocus-SNP genotype fre-
quencies. Because the SNPs used in each of these sur-
veys generally have been discovered in a separate, small-
er sample and because these SNPs were then scored in
the large sample, of 90, used in the present study, there
is a tendency for these SNPs to have a higher popu-
lation frequency than would SNPs discovered by the
sequencing of all 90 individuals. This ascertainment
bias has been a target of investigation by analysts con-
cerned that it would distort our view of LD unless a
means for correcting the bias could be found (Kuhner
et al. 2000; Nielsen 2000; Wakeley et al. 2001). Most
of this effort has focused on the frequency spectrum
of SNPs, since prior discovery of SNPs in small panels
clearly biases against finding rare SNPs. The effect of
this ascertainment bias is to underestimate LD, in part
because the skew toward SNPs that are more frequent
also biases toward older segregating variants that have
had more time to recombine. This bias may vary from
one population to another, depending on the composi-
tion of the panel in which SNPs were discovered (Niel-
sen and Signorovitch 2003).

Metrics such as D′ and have been widely used2r
to quantify LD, and, although they quantify the sta-
tistical dependence between a pair of SNPs, a more
appropriate metric for assessing the local landscape
of inter-SNP association is the population recombi-
nation rate, , where is the effective pop-r p 4N r Ne e

ulation size and r is the recombination rate between
a pair of sites (Pritchard and Przeworski 2001). Link-
age studies tell us that the rate of recombination per
base pair falls in the range of to�9 �82 # 10 6 # 10
(Broman et al. 1998). The effective size of the human
population has been estimated by several studies to
be ∼10,000, so a first guess would be that falls inr̂

the range of to . Estimates of�5 �4 ˆ2 # 10 6 # 10 r

derived in this crude way are closely comparable to
the range of estimated directly from SNP data;r̂

however, the empirical data show an excessive rate
of LD decay within a window of a few kilobase pairs
(Pritchard and Przeworski 2001).

In population genetic models, r is a parameter that
integrates the effects of mutation, drift, and recombi-
nation in giving rise to a particular statistical associa-
tion across sites. For example, in a population that is
in steady state with respect to accumulation of neu-
tral mutations, random drift, and recombination, the
expected LD is (Ohta and Kimura2E(r ) p 1/(1 � r)
1971; Sved 1971). The value of r may vary from one
population to another or from one genomic region to
another, owing either to differences in local recombi-
nation rate or to recent common ancestry of a region.
The time of common ancestry may vary widely across
genomic regions owing to drift, migration, or natural
selection, but, for neutral variation in a panmictic pop-
ulation, the size of the region sharing a most recent
common ancestor is 3/2r for a pair of chromosomes
and 1/r for a whole population (Wiuf and Hein 1999).

In the present study, ∼5,500 SNPs were tested in a
panel of 30 African Americans, 30 European Americans,
and 30 Asians, to validate the SNPs and to obtain in-
formation for the purpose of identifying the SNPs to be
chosen for a linkage analysis of CEPH families (Matise
et al. 2003 [in this issue]). The SNP clusters were defined
such that no gap between adjacent SNPs exceeded 50
kb. This produced clusters of 4–11 SNPs (mean 5.7),
spanning 16–181 kb (mean 79 kb), with clusters spaced
every 2–7 cM on the genetic map. The 4,833 SNPs that
were successfully validated were assembled into a data
table with map locations and genotypes of all 90 samples,
and it was from this table that all subsequent analysis
was performed.

Methods

SNP Selection and Typing

The primary data were collected by the performance
of TaqMan SNP assays on DNA samples from the SNP
Consortium (TSC) diversity panel, consisting of 30 Af-
rican Americans, 30 European Americans, 20 Japanese,
and 10 Chinese (Matise et al. 2003 [in this issue]). Ge-
notype calls were transferred to Cold Spring Harbor
Laboratory, where they were placed in the primary
database of TSC. A database query of all SNPs in the
present study generated a file, which was subsequently
filtered to remove those SNPs that departed strongly
from Hardy-Weinberg equilibrium ( ) or that did�4P ! 10
not reveal segregating variation. The final data set con-
sisted of genotypes of 4,833 SNPs (see the SNP Con-
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sortium Linkage Map Project Web site). Nearly all SNPs
had been placed on both the National Center for Bio-
technology Information (NCBI) build 29 physical map
and the SNP map of Celera Genomics, and both map
locations are in this data file.

Cluster Definition

Clusters were defined for the present analysis by the
collection of SNPs into a cluster such that no gap therein
exceeds 50 kb. For the analysis of r, we also required
that the minimum cluster size be 4. This produced a set
of 538 clusters when physical-map information from
either NCBI or Celera was used. All of the genotype
calls, information on physical-map location, and ascer-
tainment methods for each SNP were compiled into a
single, easily parsed data file (TSCmap.p1.Celera.txt.gz
[freely available at the SNP Consortium Linkage Map
Project Web site]). Note that the composition of the clus-
ters described here differs from those in the companion
article (Matise et al. 2003 [in this issue]), because the
present study examined more SNPs genotyped at Celera
Genomics, excluded the Motorola SNPs, and assembled
clusters on the basis of physical position only (not on
the basis of the level of heterozygosity).

Estimation of Population Recombination Rate

To estimate for each cluster of SNPs, we used ar̂

modification of Hudson’s (2001) composite-likelihood
method, taking the product of the likelihood function
calculated for individual pairs of SNPs. The method is
modified to take into account the special ascertainment
scheme used in the TSC data. For a pair of SNPs, the
likelihood function for r was calculated as

L(r) p Pr(x d A ,A ,r) , (1)1 2

where x is the matrix of haplotypic data for the two
loci and is the ascertainment condition that varia-Ai

bility is observed in the ascertainment sample of locus
i. The basic idea is that the sampling probability is
calculated conditional on the ascertainment condition.
The number of individuals in the ascertainment sample
may vary from locus to locus but is known for all loci,
and the likelihood function in equation (1) can there-
fore be calculated using the methods described by Niel-
sen and Signorovitch (2003). Some modifications were
necessary to accommodate genotypic data and varia-
tion in the ascertainment condition among loci (these
modifications are described in greater detail in appen-
dix A; also see the SNP Consortium Linkage Map Proj-
ect Web site).

Confidence and Hypothesis Testing

Extensive simulations were performed, to test the hy-
potheses and to obtain CIs for parameter estimates. In
all cases, these simulations were done using a standard
coalescent model with recombination (Hudson 1985).
One thousand parametric bootstrap samples were col-
lected for each cluster to obtain the variance in the
estimates of r. These samples were simulated under the
estimated parameter values. In some cases, the esti-
mates of r were � (i.e., the composite-likelihood func-
tions were nondecreasing functions). In such cases, a
bound given by (i.e., by theˆmin {r : Pr (r p �) 1 0.05}
minimum value of r at which the probability of ob-
taining a composite-likelihood estimate of isr̂ p �
10.05) was obtained instead by simulation. Paramet-
ric bootstrapping was also used to test for differenc-
es in r between pairs of clusters. The null hypothesis

was tested using the ratio of the maximumH :r p r0 1 2

composite likelihood obtained under the null hypoth-
esis and under the alternative hypothesis of . Ther ( r1

distribution of this test statistic was then obtained using
parametric simulations under the parameter values es-
timated under the null hypothesis. A Wilcoxon signed-
ranks test was used to test for differences in r between
populations.

Estimation of LD

The SNP genotype calls in the present study were
not phased, so that doubly heterozygous individuals
were ambiguous with respect to haplotypes. For this
reason, the LD metrics are all based on the composite
LD (Weir 1996), which does not entirely separate de-
partures from multilocus Hardy-Weinberg frequencies
of genotypes from true gametic-phase disequilibrium.
Nevertheless, studies have shown that, for populations
close to Hardy-Weinberg equilibrium, the composite
LD metrics are an excellent approximation to the true
gametic-phase disequilibrium.

Results

Allele Frequencies and Population Subdivision

The SNPs examined in the present study cannot be
construed as a random sample but rather were iden-
tified through a variety of different methods and in a
variety of discovery panels of different size and com-
position. Information from TSC indicated that 80% of
the SNPs used in the present study were discovered with
just one pair of mismatching sequence reads. The con-
sequences of these heterogeneous modes of ascertain-
ment are not easy to assess, but figure 1 shows that the
resulting allele-frequency spectrum is rather uniform
and that the distribution is similar across populations.
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Figure 1 Frequency of the minority SNP allele for all three population samples. Black bars represent African Americans, blue bars
represent European Americans, and red bars represent Asians. Apart from the dip in the rarest class, the data are remarkably consistent with
a uniform distribution, which one would expect with an ascertainment sample of size 2.

Mean frequencies of the minority allele in the African
American, Asian, and European American samples
were 0.236, 0.247, and 0.253, respectively. The degree
of population subdivision can be assessed by the cal-
culation of Wright’s statistic , which quantifies theFST

among-population portion of variance. The mean FST

for the SNPs in the present study was 0.083, which is
consistent with the figure obtained with SNPs that are
randomly ascertained by complete sequencing (e.g., see
Fullerton et al. 2000). The distribution of has a longFST

tail, with 10% of the SNPs having an value 10.18FST

(fig. 2). On the basis of these findings, a principal con-
clusion is that the SNPs reflect a wide spectrum of
among-population variability, including a substantial
number with quite strong differentiation. Estimates of

are also biased by ascertainment of panel SNPs, andFST

a full treatment of bias correction and inferences about
past operation of natural selection on the basis of the
clustering of elevated, bias-corrected will be con-FST

sidered in more detail elsewhere.

Heterogeneity of Rates of Population Recombination, r

Before examining classical metrics for LD, we stress
that the parameter r has key advantages in the context
of quantifying the landscape of ancestral recombina-
tion in the human genome. Several methods exist for

the estimation of r, and our approach, outlined in the
“Methods” section, is an extension of the pseudolike-
lihood method of Hudson (2001). This approach ex-
plicitly accommodates the ascertainment method in an
effort to correct any bias that might be introduced.

Figure 3 shows that estimates of r exhibit striking
heterogeneity across the genome, spanning more than
two orders of magnitude. Wilcoxon signed-ranks tests
reveal that the differences among the three populations
are highly significant; however, we stress that the CIs in

are large as a result of the modest size of the samplesr̂

and the sampling of only 4–10 SNPs per cluster. With
a 11,000-fold range in estimates of from one genomicr̂

region to another, one is tempted to claim that the data
identify hotspots and coldspots of recombination. But
figure 3 suggests no such bimodality to ; instead, therer̂

is a quite smooth log-normal distribution among these
clusters in r estimates.

The distribution of is unambiguously unimodal,r̂

despite the clear evidence (from other sources) for re-
combination hotspots (Jeffreys et al. 2000, 2001). The
unimodality of is not at odds with evidence for hot-r̂

spots, because of a combination of sampling error and
the occurrence of hotspots in locally restricted regions.
We demonstrated this by drawing samples from mix-
tures of normal distributions representing hotspot and
nonhotspot rates of recombination, with each compo-
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Figure 2 Distribution of for all 4,833 SNPs in the phase 1 set that passed the quality filters. Note the tail of SNPs with exceptionallyFST

high , possibly indicating local founding effects, random drift, and region-specific differences in natural selection.FST

nent having a variance matching our estimation error.
An enormous range of hotspot densities still produced
a unimodal distribution of . Departure from a unimod-r̂

al distribution required a substantial fraction of clusters
with a mean that was 2 SDs greater than background.r̂

Given rates of recombination and breadths of recom-
bination hotspots from empirical studies, the cluster-
wide mean would be perturbed dramatically only ifr̂

the cluster had dozens of hotspots. Overall, the unimo-
dality shown in figure 3 tells us little about recombina-
tion-hotspot density, and substantially greater numbers
of markers would be needed to do so. These conclu-
sions are consistent with those of Phillips et al. (2003),
who go so far as to say that the heterogeneity in LD
across chromosome 19 can be explained without the
invocation of recombination hotspots at all.

Estimates of vary along the chromosomes in a wayr̂

that suggests regional differences in recombination rate
and/or effective size (fig. 4). Note that some genomic re-
gions exhibit sharp dips or rises in in a single population,r̂

other regions show two populations tracking one another,
and, elsewhere, all three populations are coherent. This
observation is robust over a range of spline widths and
is seen with simple moving-average plots as well (not
shown). Sharp differences among populations may reflect
local perturbations in effective size, perhaps owing to a

strong local selection episode. Scanning the whole genome
(fig. 5), one can see that no region seems to be immune
to this process.

Standard Metrics for LD

To contrast the above results with the more simply
accessible calculations of metrics for LD, we also esti-
mated D, D′, and from the data, without correcting2r
for ascertainment. Because the genotypic data are of
unknown linkage phase, all these statistics are based
on the composite LD (Weir 1996). Figure 6 shows the
relation between and physical distance for 20,8942r
SNP pairs, and it is clear that many regions have abun-
dant LD, spanning 60 or even 80 kb. But it is crucial
to also consider that SNP pairs that are even less than
1 kb apart may have essentially no LD, so that asso-
ciation tests may fail when one of these SNPs is the
marker and the other is a determinant of a disease.

The estimates of and of were obtained in radi-2ˆ ˆr r

cally different ways, yet we expect them to show op-
posite sides of the same phenomenon. Regions with
very high LD would be expected to produce an infer-
ence of low population recombination rate. To assess
this in an informal way, we examined plots of the es-
timate of for each cluster versus the mean for all2ˆr̂ r
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Figure 3 Base 10 logarithm of estimates of the population recombination parameter r in the three population samples. Black bars represent
African Americans, blue bars represent European Americans, and red bars represent Asians.

pairs in that cluster (fig. 7). The strong negative cor-
relation was observed as expected.

Heterogeneity in and among the Three Population2ˆr̂ r
Samples

One crucial attribute of an LD map is that we have
a good understanding of its utility in different human
populations. Local differences in LD will likely neces-
sitate selection of some population-specific SNPs for an
optimal LD map, but it would be very useful also to
have a core set of SNPs that are informative in many
populations. For this reason, tests of homogeneity of

and of LD statistics across populations are vital. Ar̂

first gross comparison to the Huttley et al. (1999) LD
map was performed by examining the 11 regions in
the genome that they flagged as having exceptionally
high LD. We found that 10 of these 11 regions had a
nearby cluster with that was !5 # 10�5 in the Eu-r̂

ropean American sample, a result that corresponds to
unusually low population recombination. It remains an
important problem to devise means by which to rigor-
ously integrate and test heterogeneity across LD maps
acquired in such distinct ways.

The three population groups considered here were
sampled in a uniform way, so that tests of homogeneity
have a clear statistical meaning. The homogeneity tests

that we applied were performed by the calculation of
likelihood ratios. Across the entire map, a Wilcoxon
signed-ranks tests showed that the Asian and European
American estimates of were not different but that ther̂

estimates of in the African American sample werer̂

significantly elevated (W� p 80,220 [ ] andP ! .0001
89,142 [ ], for Asian and European AmericanP ! .0001
estimates and African American estimates, respective-
ly). Repeating this test in small segments of the genome,
one would be hard-pressed to find regions in which r̂

is not statistically significantly elevated in the African
American sample. Overall, the Pearson correlation co-
efficient for r estimates is 0.608 for African Americans
versus Asians, 0.698 for African Americans versus Eu-
ropean Americans, and 0.649 for Asians versus Euro-
pean Americans, all significant at (fig. 8). Sim-P ! .0001
ilarly, log-linear models of genotype counts show sig-
nificant levels of interpopulation heterogeneity of LD.
Despite this heterogeneity, regions of the genome that
exhibit very high LD in one population are more likely
to exhibit high LD in other populations. This corre-
lation across population groups in rates of decay of LD
has been cited previously (e.g., see Abecasis et al. 2001).
Nonetheless, even with this interpopulation correlation
in LD, there is room for statistically significant differ-
ence among the populations in or LD metrics. Thisr̂



Figure 4 Base 10 logarithm of r in each of the three populations, estimated for each cluster on chromosomes 1 and 2, plotted as a spline
fit. Notice how the Asian (red) and European American (blue) samples tend to track together somewhat more than either does with the African
American sample (black).
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Figure 5 Base 10 logarithm of r, plotted for each cluster (in genome order). Colors alternate for successive chromosomes: odd-numbered
chromosomes are denoted by red, and even-numbered chromosomes are denoted by green. The blue line denotes a spline fit.

heterogeneity arises from two sources: the sampling var-
iation that occurs in drawing the relatively small samples
( per population) and the stochastic variationn p 30
that occurred during the past ancestry of the popula-
tions. The significance tests showed that the hetero-
geneity exceeds that expected from sampling alone, but
whether the heterogeneity exceeds what one expects
from neutral drift requires an extensive range of sim-
ulations of plausible demographic scenarios and is be-
yond the scope of the present article.

Another approach to the quantification of popu-
lation subdivision is to consider the estimates of LD
among unlinked SNPs. Estimates in the sample pooled
across the three population groups give a picture of the
spurious LD generated by this known subdivision and
can be compared to the LD seen among unlinked SNPs
within the same population sample. Mean � SD for2r̂
the pooled sample was , whereas the0.0163 � 0.0259
respective figures for the Asian, African American, and
European American samples were ,0.0289 � 0.0429

, and . The greater0.0296 � 0.0445 0.0298 � 0.0434
mean within population samples is almost certainly2r̂
due to the smaller sample size as compared with the
pooled sample. The pooled sample had 4.8% of the
pairwise tests of unlinked SNPs, with a significant exact
test at the 1% level, indicating some inflation due to

population heterogeneity. Within populations, the Af-
rican American, Asian, and European American sam-
ples were much closer to the null expectation, with
1.20%, 1.07%, and 1.09%, respectively, of tests sig-
nificant at the 1% level. Our overall impression of sig-
nificance of LD among unlinked SNPs is much less than
that of Sinnock and Sing (1972), who found many in-
stances of significant LD among unlinked loci in a sam-
ple of 6,756 people from Tecumseh, MI. The large sam-
ple size of their study gave it considerable power to
detect subtle, but confounded, effects of drift, hidden
population stratification, and natural selection.

Discussion

A SNP sampled from a population can be thought of as
possessing an ancestral genealogy joining the members
of the sample back to a common ancestor. Samples of
two SNPs have two trees of ancestry, and the degree of
coupling of these genealogies depends on the rate of re-
combination between them. To the extent that the trees
are correlated, there will be LD between the SNPs. Pair-
wise LD can thus be thought of through the underlying
joint genealogy of the pair of SNPs, and an ancestral
recombination graph can be constructed to capture this
ancestral history (Wiuf and Hein 1999; Hudson 2001;
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Figure 6 Decay of LD ( ) with physical distance between each respective pair of SNPs. Across this set of comparisons, few cases of2r
strong LD occur for SNPs more distant than ∼80 kb. For every SNP in this data set, there exists, within the same cluster, at least one other
SNP that has 10.5.2r

Nordborg and Tavaré 2002). Processes occurring at the
population level that distort the topology of this graph
(e.g., migration and population expansion) will likewise
have an impact on the pattern of LD. Although it is
difficult to tease out the nature of the forces that generate
LD in any particular case, examination of a full genome’s
breadth of SNPs can provide deeper insights regarding
the recombinational history of humans.

Heterogeneity among populations in the LD map
has been widely cited in local genomic regions, but
the full extent of this heterogeneity becomes quite
apparent when a whole-genome scan such as this is
done. In fact, among these three major population
groups, only 17% of the clusters that span 1100 kb
produced estimates of r that were not statistically
heterogeneous across the three population groups.
Given an average of 0.08 and an distributionF FST ST

that includes much higher values, it is perhaps not
surprising that some combination of drift and selec-
tion would result in such heterogeneity. The role of

drift alone in the generation of differences in haplo-
type frequencies and concomitant variation in LD has
been understood for many years (Ohta and Kimura
1971; Sved 1971), but even more striking is the role
of local differences in natural selection, driven by
pathogens or other local environmental effects (Tish-
koff et al. 2001; Hamblin et al. 2002). In addition,
one of the major causes of LD across distant sites is
admixture, and the African American population ap-
pears to have, on average, lower LD than the other
population groups, indicating that the past demo-
graphic history (larger long-term effective size in Af-
rica) outweighs the admixture effect. On a more local
scale, it is also well known that founding events of
some population isolates may result in much higher
LD over longer distances (Mohlke et al. 2001), but
many populations considered as having strong found-
er effects show LD patterns typical of large popula-
tions (Clark et al. 1998; Fullerton et al. 2000).

Many attributes of polymorphisms are considered as
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Figure 7 Clusters with low , consistent with higher levels of recombination, generating negative correlation between and r. Open2 2r r
circles represent African Americans, blue points represent European Americans, and red points represent Asians.

means by which to identify interesting departures from
the standard neutral theory. If a region of the genome
recently had an advantageous mutation sweep to fix-
ation, then it would leave a characteristic signature in
local levels of variation and of LD (Kim and Stephan
2002). We are not able to conclude much about local
variability, because of the way in which the SNPs were
ascertained; however, another attribute that would be
distorted by a local selection event is the degree of pop-
ulation subdivision.

The existence of recombination hotspots in the hu-
man genome has been known for quite some time, but
most of our information comes from the in-depth study
of defined regions, rather than from a genomewide
scan for hotspot density. The literature on hotspots
further leads one to believe that most of the genome
has a quite low rate of recombination, and there are
relatively sharply defined regions of much higher re-
combination (Jeffreys et al. 2000, 2001; Daly et al.
2001; Petes 2001). Despite this sharp difference in re-
combination rate between regions with hotspots versus
regions that lack hotspots, the distribution of popu-
lation recombination rates is smooth and unimodal
(fig. 3). Such a unimodal distribution is not unex-
pected, however, since these estimates of are averagedr̂

over regions �180 kb; thus, there is some smoothing
that occurs in estimation across regions of this size. In
addition, these are estimates of , not strictly the re-r̂

combination rate, so other factors that influence effec-
tive population size will also tend to smooth out a bi-
modal recombination pattern.

Importantly, the rate of recombination within re-
combination hotspots is known to be highly variable.
Jeffreys et al. (2001) showed, both by single-sperm
typing and by LD analysis, that a 216-kb segment of
chromosome 6 had six recombination hotspots and
that each corresponds to well-defined regions of lo-
cally lower LD. If the region that Jeffreys et al. (2001)
studied reflects the true density of recombination hot-
spots (one every 36 kb), then we would expect to cap-
ture several hotspots in every cluster. Fine-structure
analysis of LD from molecularly phased data also pro-
vides empirical support for clustering of regions of
high and low LD (Olivier et al. 2001). The pattern of
LD in the major histocompatibility complex (MHC)
region, on chromosome 6, is remarkably consistent
across populations, and Kauppi et al. (2003) go so far
as to suggest that heterogeneity in LD across this re-
gion is dominated by recombination hotspots as op-
posed to population history. Our data demonstrate
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Figure 8 Scatterplot of r estimates, showing correlation across populations. The Pearson correlation for Asians versus European Americans
is 0.649 (blue) and for Asians versus African Americans is 0.608 (red); not shown is African Americans versus European Americans, for which
the correlation is 0.698. Note how the cluster of red points (African Americans) tends to lie above the European American points, consistent
with higher population recombination and lower LD in African Americans.

that a determination of the role that hotspots play in
the shaping of human LD genomewide will require
much greater SNP density than was used here. But our
data also show clearly that, despite claims of local
regions with consistent among-population patterns of
LD, the overall picture is that the variability in LD
across populations is sufficient to be highly statistically
significant. The key point is that, for tests of disease
association, the heterogeneity in statistical significance
of association with disease is likely to be even greater
than the heterogeneity in inter-SNP LD (e.g., because
of confounding environmental effects).

We are only beginning to understand the nature of
variation in recombination rate across the human ge-
nome. In yeast, it is clear that recombination hotspots
correspond to regions with elevated frequencies of dou-
ble-strand DNA breaks (Petes 2001). Deletions and mu-
tations that reduce the incidence of double-strand DNA
breaks also reduce the frequency of recombination within
hotspots. There also appears to be competition between
these sites, in that deletion of a hotspot increases the
activity of neighbors and rearrangements that place two
hotspots in close proximity reduce the level of activity of

both (Fan et al. 1997). In yeast, hotspots are correlated
with high GC content, just as there is a correlation be-
tween GC content and local recombination rate in hu-
mans (Fullerton et al. 2001). Understanding the mecha-
nism behind such correlations may be critical to the suc-
cess of an LD-mapping approach, because they may pro-
vide the clearest way to predict the distance scale over
which there are changes in local rates of recombination.

Gene conversion may play a significant role in the
decay kinetics of LD in human populations. Ardlie et
al. (2001) determined SNP genotypes in 68 STSs and
found much less LD among SNPs within very short
physical distances than expected on the basis of pop-
ulation genetic theory. They concluded that gene con-
version must contribute to the shuffling of gametic
phase at this fine scale, another result relevant to fine-
scale LD mapping. Frisse et al. (2001) applied Hud-
son’s (2001) method and found that the inferred ratio
of gene conversion to crossing-over is 7.3, with a
mean conversion-tract length of 500 bp. Similarly,
Wiehe et al. (2000) found that gene conversion ap-
pears to play an important role in the decay of LD
over short distances within the MHC region, on chro-
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mosome 6. Analysis of many genomic regions further
supports the idea that local LD is less than expected,
and the discrepancy is easily accommodated by infer-
ence of gene conversion (Przeworski and Wall 2001).
If there is wide variation in the rate of gene conversion
across the genome, this could result in distortions in
the LD map that may, in turn, adversely affect infer-
ences from a whole-genome association study. Rate of
gene conversion could not be estimated from our data,
but it is one of potentially many unmeasured factors
that may have an impact on the pattern of LD and its
utility in the mapping of genes associated with risk of
complex disease.

Several approaches have been taken to estimate r from
a sample of DNA sequences drawn from a steady-state,
panmictic population (Hey and Wakeley 1997; Wake-
ley 1997; Wall 2000; Hudson 2001). All of these estima-
tors are biased downward if the data consist of SNPs
ascertained from a small discovery panel, and only re-
cently have methods been devised to accommodate the
ascertainment scheme into inferences of (Nielsen andr̂

Signorovitch 2003). To assess the impact of ascertain-
ment bias in this context, we also estimated by Hud-r̂

son’s method, and we found that the squared correla-
tion between the corrected and uncorrected estimates
of is 0.984, suggesting that the bias correction hadr̂

very little impact on the estimates. But correlation isr̂

a poor metric for the assessment of performance, be-
cause we really need to know how often a false inference
would be made using the uncorrected estimates. Of the
527 clusters for which r was estimated both with and
without correction, we find that 10% of the clusters
had an overestimate of r 125%. A key observation is
that the failure to correct for bias results in estimates
of r that are greater than the true values. This systemat-
ic bias is related to the fact that SNPs ascertained from
a small panel will be skewed toward higher allele fre-
quency, which, on average, are older and have had more
time to recombine in the population. As pointed out by
Nielsen and Signorovitch (2003), the ascertainment bi-
ases of D′ and are far greater than is the ascertainment2r
bias of estimates of .r̂

An important issue that needs to be elucidated in the
near future is the number of SNPs that would be required
in order to adequately cover the human genome for an
LD map. Great hopes are being placed on the idea that,
at a local scale, some genomic regions appear to have
relatively few common haplotypes, so that a subset of
SNPs might be used to mark these haplotypes (Daly et
al. 2001; Johnson et al. 2001; Gabriel et al. 2002); how-
ever, these have been sampled regions, not a scan. Patil
et al. (2001) covered a whole chromosome, but the focus

was on the largest regions, not the long tail of regions
with very weak block structure. Zhang et al. (2002) ap-
plied dynamic programming to the same data set to ob-
tain a dramatic reduction in numbers of SNPs needed to
cover the same regions of locally reduced haplotype di-
versity. Judson et al. (2002) made an attempt to model
the number of SNPs needed for genomewide coverage
and found the number to be in the range of 100,000–
600,000 SNPs. The very high variability in local recom-
bination rates certainly suggests that the SNP set carefully
tailored to this recombination profile could be greatly
more efficient than either a uniform or a random distri-
bution. Work is in progress to model this process.

In addition to the caveats about heterogeneity in local
LD, all of the above concerns apply even if the disease
that is being mapped is fully penetrant and Mendelian
in character. Like most other authors writing about dense
arrays of SNPs for LD mapping, we have ignored what
is probably the biggest impediment to success—namely
that the diseased conditions to which we want to apply
LD mapping are likely to be genetically heterogeneous
and exhibit with low penetrance, low heritability, moder-
ate sibling recurrence risk, and complicated epistatic and
genotype-by-environment interactions. These complica-
tions may greatly reduce the efficacy of finding genes that
underlie such traits through statistical association with a
SNP (Weiss and Terwilliger 2000; Weiss and Clark 2002).
One limitation that whole-genome LD mapping will face,
almost regardless of the landscape of LD, is that the pow-
er to detect association drops rapidly with the frequen-
cy of the disease-associated alleles (Kaplan and Morris
2001). Only the magnitude of the consequences to health
and the fact that many complex disorders have reason-
ably hopeful sibling recurrence risk motivate us to con-
tinue considering LD mapping in this context. As the
density of LD maps continues to increase and as we get
a clearer picture of the landscape of LD across the human
genome, we will get a better idea of the likely efficacy of
LD mapping the genes that underlie complex traits.
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Appendix A

Here, we describe how to calculate the likelihood function for a pair of SNPs while taking into account the
special ascertainment scheme used in the TSC data. The method is similar to that described by Nielsen and
Signorovitch (2003), except that the TSC data lack linkage phase information and there is no consistent ascer-
tainment scheme used for all SNPs.

We distinguish between three samples: the typed sample of diploid individuals, the ascertainment sample of
locus 1, and the ascertainment sample of locus 2. Except for loci with missing data, the sample size of typed
individuals is . The sample size of the ascertainment samples, called the “depths,” are typically two to fivex p 90
chromosomes and are denoted by and . We will assume that the two ascertainment samples are nonoverlapping.d d1 2

The data in the typed sample can be coded as , wherex p (x ,x ,x ,x ,x ,x ,x ,x ,x )00,00 00,01 00,11 01,00 01,01 01,11 11,00 11,01 11,11

is the number of individuals of type 00 in the first locus and type 00 in the second locus when two diallelicx00,00

loci with alleles 0 and 1 are assumed, and so forth. We here assume an arbitrary labeling of alleles, but the method
can trivially be extended to the case in which the ancestral state is known. We are interested in calculating

( )L(r) p lim Pr x d A ,A ,v,r , (A1)1 2
vr0

where is the ascertainment condition that variability is observed in the ascertainment sample of locus i,Ai

, and ( is the effective population size, m is the per-site mutation rate, and r is thev p 4N m r p 2N r Ne e e

recombination rate per generation between the two loci). The reason for taking the limit of vr0 (as in Nielsen
2000 and Hudson 2001) is to eliminate the nuisance parameter v. The effect of this is very small, since v is
typically on the order of 10�3 and since is only weakly dependent on v. Notice thatPr (x d A ,A ,v,r)1 2

( )Pr A ,A ,x d v,r1 2

( )Pr x d A ,A ,v,r p . (A2)1 2 ( )Pr A ,A d v,r1 2

We will assume that the SNPs have been identified independently in clusters of different reads. Let the joint
ascertainment sample for the two loci be , where , , , and are the (unknown)n p (n ,n ,n ,n ) n n n na a1 a2 a3 a4 a1 a2 a3 a4

numbers of genotypes of types 00, 11, 10, and 01, respectively, in the joint ascertainment sample. Then,

( ) ( ) ( )Pr A ,A d v,r p Pr A ,A d n Pr n d v,r .�1 2 1 2 a a
na

Let be the length of lineage j of the ascertainment sample of locus i, and let be the total tree length in locus(i)t Tij

i. Also, let be an indicator function that takes on the value 1 if one mutation in lineage j of locus 1 and oneIjk

mutation in lineage k of locus 2, with no other mutations occurring in the history of the genealogies, generate
exactly the data pattern . Then,na

(1) (2)�vt /2 �vt /2 �v(T �t )/2 �v(T �t )/21j 2k 1j 2k( )Pr n d v,r pE I (1 � e )(1 � e )e e , (A3)�a jk[ ]
j,k

where the expectation is with respect to the joint distribution of genealogies in loci 1 and 2 (Nielsen 2000; Hudson
2001).

Let and be the probabilities of obtaining only alleles of type 0 and only alleles of type 1, respectively, inP(0) P(1)i i

the ascertainment sample of locus i. Likewise, let be the probability of only obtaining alleles of type s in locus 1Pst

and only obtaining alleles of type t in locus 2 in the ascertainment samples of loci 1 and 2. Then,

2 2

( )Pr A ,A d n p1 � �P(j) � P (A4)� �1 2 a i ij[ ]
ip1 jp1
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and

n �n d �d n �n d �da2 a3 1 2 a1 a4 1 2P (1) p , P (0) p ,Z Z1 1( ) ( ) ( ) ( )d d d d1 1 1 1

n �n d �d n �n d �da2 a4 1 2 a1 a3 1 2P (1) p , P (0) p ,Z Z2 2( ) ( ) ( ) ( )d d d d1 1 1 1

n d �d n d �da1 1 2 a4 1 2P p I(n p 0) , P p I(n p 0) ,Z Z00 a2 01 a3( ) ( ) ( ) ( )d �n d d �n d1 a4 1 1 a1 1

n d �d n d �da3 1 2 a2 1 2P p I(n p 0) , P p I(n p 0) , (A5)Z Z10 a4 11 a1( ) ( ) ( ) ( )d �n d d �n d1 a2 1 1 a3 1

where returns 1 if the condition c is true and 0 otherwise. Here, we also use the convention thatI(c)

n
p 0( )k

if or .k ! 0 k 1 n
The numerator in equation (A2) can be calculated by considering the pooled data from typed SNPs and from

ascertainment samples, augmented by information regarding haplotypic phase calculated by conditioning on the
number of haplotypes of type 11 in the sample of typed SNPs (k). The augmented data may be expressed as

, where , , , and are the numbers in the augmented sample of genotypes of types 00,n p (n ,n ,n ,n ) n n n n1 2 3 4 1 2 3 4

11, 10, and 01, respectively. Then,

x �x �x �2x5 6 8 9

( ) ( )Pr A ,A ,x d v,r p Pr A ,A ,x,k d v,r .�1 2 1 2
kpx �x �2x6 8 9

Let be a sample with haplotypic phase known of size x, for which , where ,(x) (x)n n p (a,b,c,k) c p x � 2x � x � dk k 4 7 8

, , and . Since k is fully determined byb p x � x � 2x � d a p 2x � x � x � x � d d p x � x � x � 2x � k6 2 3 1 2 4 5 5 6 8 9

and vice versa,(x)nk

(x) (x)( ) ( ) ( ) ( ) ( )Pr A ,A ,x,k d v,r p Pr x d n Pr A ,A d n Pr n ,n d n Pr n d v,r�1 2 k 1 2 a k a
n

(x) (x)( ) ( ) ( ) ( )pPr x d n Pr n ,n d n Pr A ,A d n Pr n d v,r .�k k a 1 2 a
na

Here, . From the study by Hudson (2001),(x)n p n ∪ na k

x(x) x 2xhet( )Pr x d n p 2 , (A6)Zk ( ) ( )x ,x ,…,x a,b,c,k1 2 9

where is the number of individuals heterozygous in at least one of the loci. Also,xhet

n(x) n n n 2x�d �d11 01 10 00 1 2( )Pr n ,n d n p . (A7)Zk a ( ) ( ) ( ) ( ) ( )k b c a 2x

is given by equation (A3), but with n replaced by . When considering the limit in equation (A1), wePr (n d v,r) na

replace with , and we do a similar replacement for , as in the studies by NielsenPr (n d v,r) E (� I t t ) Pr (n d v,r)a ij 1i 2ji,j

(2000) and Hudson (2001). These expectations can be tabulated for all possible values of n and r, assuming
Kingman’s (1982) coalescent process, using the computer program by Hudson (2001). After initial tabulation of
these expectations, most of the computational time spent calculating the (composite) likelihood function for r is
devoted to calculating the combinatorial terms in equations (A4)–(A7).
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