43 research outputs found
Atomic Level Strain Induced by Static and Dynamic Oxygen Vacancies on Reducible Oxide Surfaces
Surface strain often controls properties of the material including charge
transport and chemical reactivity. Localized surface strain is measured with
atomic resolution on (111) ceria nanoparticle surfaces using environmental
transmission electron microscopy under different redox conditions. Density
Functional Theory (DFT) coupled with TEM image simulations have been used for
aid in interpreting the experimental data. Oxygen vacancy creation/annihilation
introduces strain at surface and near surface regions on cation sublattice.
Static and fluxional strainmaps are generated from images at these different
conditions and compared. While fluxional strain is highest at locations
associated with unstable vacancies at active sites, highly inhomogeneous static
strain fields comprising of alternating tensile/compressing strain is seen at
surface and subsurfaces linked to the presence of stable oxygen vacancies.
Interestingly, both stable and unstable oxygen vacancies are found within a few
atomic spacing of each other on the same surface. The static strain pattern
depends on the ambient inside TEM. Oxidizing environments tend to lower vacancy
concentrations at the surface whereas a highly reducing environment created
using high electron dose creates oxygen vacancies everywhere (bulk and
surfaces) in the nanoparticle
Atomic resolution mapping of localized phonon modes at grain boundaries
Phonon scattering at grain boundaries (GBs) is significant in controlling
nanoscale device thermal conductivity. However, GBs could also act as
waveguides for selected modes. To measure localized GB phonon modes, meV energy
resolution is needed with sub-nm spatial resolution. Using monochromated
electron energy loss spectroscopy (EELS) in the scanning transmission electron
microscope (STEM) we have mapped the 60 meV optic mode across GBs in silicon at
atomic resolution and compared it to calculated phonon densities of states
(DOS). The intensity is strongly reduced at GBs characterised by the presence
of five- and seven-fold rings where bond angles differ from the bulk. The
excellent agreement between theory and experiment strongly supports the
existence of localized phonon modes and thus of GBs acting as waveguides
GPAW: open Python package for electronic-structure calculations
We review the GPAW open-source Python package for electronic structure
calculations. GPAW is based on the projector-augmented wave method and can
solve the self-consistent density functional theory (DFT) equations using three
different wave-function representations, namely real-space grids, plane waves,
and numerical atomic orbitals. The three representations are complementary and
mutually independent and can be connected by transformations via the real-space
grid. This multi-basis feature renders GPAW highly versatile and unique among
similar codes. By virtue of its modular structure, the GPAW code constitutes an
ideal platform for implementation of new features and methodologies. Moreover,
it is well integrated with the Atomic Simulation Environment (ASE) providing a
flexible and dynamic user interface. In addition to ground-state DFT
calculations, GPAW supports many-body GW band structures, optical excitations
from the Bethe-Salpeter Equation (BSE), variational calculations of excited
states in molecules and solids via direct optimization, and real-time
propagation of the Kohn-Sham equations within time-dependent DFT. A range of
more advanced methods to describe magnetic excitations and non-collinear
magnetism in solids are also now available. In addition, GPAW can calculate
non-linear optical tensors of solids, charged crystal point defects, and much
more. Recently, support of GPU acceleration has been achieved with minor
modifications of the GPAW code thanks to the CuPy library. We end the review
with an outlook describing some future plans for GPAW
Developments and applications of the OPTIMADE API for materials discovery, design, and data exchange
The Open Databases Integration for Materials Design (OPTIMADE) application programming interface (API) empowers users with holistic access to a growing federation of databases, enhancing the accessibility and discoverability of materials and chemical data. Since the first release of the OPTIMADE specification (v1.0), the API has undergone significant development, leading to the upcoming v1.2 release, and has underpinned multiple scientific studies. In this work, we highlight the latest features of the API format, accompanying software tools, and provide an update on the implementation of OPTIMADE in contributing materials databases. We end by providing several use cases that demonstrate the utility of the OPTIMADE API in materials research that continue to drive its ongoing development
Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.
BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8-80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3-4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca
Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK
Background
A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials.
Methods
This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674.
Findings
Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation.
Interpretation
ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials