Atomic resolution mapping of localized phonon modes at grain boundaries

Abstract

Phonon scattering at grain boundaries (GBs) is significant in controlling nanoscale device thermal conductivity. However, GBs could also act as waveguides for selected modes. To measure localized GB phonon modes, meV energy resolution is needed with sub-nm spatial resolution. Using monochromated electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM) we have mapped the 60 meV optic mode across GBs in silicon at atomic resolution and compared it to calculated phonon densities of states (DOS). The intensity is strongly reduced at GBs characterised by the presence of five- and seven-fold rings where bond angles differ from the bulk. The excellent agreement between theory and experiment strongly supports the existence of localized phonon modes and thus of GBs acting as waveguides

    Similar works