Atomic Level Strain Induced by Static and Dynamic Oxygen Vacancies on Reducible Oxide Surfaces

Abstract

Surface strain often controls properties of the material including charge transport and chemical reactivity. Localized surface strain is measured with atomic resolution on (111) ceria nanoparticle surfaces using environmental transmission electron microscopy under different redox conditions. Density Functional Theory (DFT) coupled with TEM image simulations have been used for aid in interpreting the experimental data. Oxygen vacancy creation/annihilation introduces strain at surface and near surface regions on cation sublattice. Static and fluxional strainmaps are generated from images at these different conditions and compared. While fluxional strain is highest at locations associated with unstable vacancies at active sites, highly inhomogeneous static strain fields comprising of alternating tensile/compressing strain is seen at surface and subsurfaces linked to the presence of stable oxygen vacancies. Interestingly, both stable and unstable oxygen vacancies are found within a few atomic spacing of each other on the same surface. The static strain pattern depends on the ambient inside TEM. Oxidizing environments tend to lower vacancy concentrations at the surface whereas a highly reducing environment created using high electron dose creates oxygen vacancies everywhere (bulk and surfaces) in the nanoparticle

    Similar works

    Full text

    thumbnail-image

    Available Versions