302 research outputs found

    A highly reproducible rotenone model of Parkinson's disease

    Get PDF
    Producción CientíficaThe systemic rotenone model of Parkinson's disease (PD) accurately replicates many aspects of the pathology of human PD and has provided insights into the pathogenesis of PD. The major limitation of the rotenone model has been its variability, both in terms of the percentage of animals that develop a clear-cut nigrostriatal lesion and the extent of that lesion. The goal here was to develop an improved and highly reproducible rotenone model of PD. In these studies, male Lewis rats in three age groups (3, 7 or 12-14 months) were administered rotenone (2.75 or 3.0 mg/kg/day) in a specialized vehicle by daily intraperitoneal injection. All rotenone-treated animals developed bradykinesia, postural instability, and/or rigidity, which were reversed by apomorphine, consistent with a lesion of the nigrostriatal dopamine system. Animals were sacrificed when the PD phenotype became debilitating. Rotenone treatment caused a 45% loss of tyrosine hydroxylase-positive substantia nigra neurons and a commensurate loss of striatal dopamine. Additionally, in rotenone-treated animals, alpha-synuclein and poly-ubiquitin positive aggregates were observed in dopamine neurons of the substantia nigra. In summary, this version of the rotenone model is highly reproducible and may provide an excellent tool to test new neuroprotective strategies

    A Traditional Diet Is Associated with a Reduced Risk of Eczema and Wheeze in Colombian Children

    Get PDF
    Background: Diet might influence the risk of allergic diseases. Evidence from developing countries with high prevalence of childhood asthma is scant. Methods: Information on wheeze, rhinitis, and eczema was collected from 3209 children aged 6–7 years in 2005, who were taking part in the International Study on Asthma and Allergy in Children (ISAAC) in Colombia. Intake frequency of twelve food groups was assessed. Associations between each food group and current wheeze, rhino-conjunctivitis, and eczema were investigated with multiple logistic regressions, adjusting for potential confounders. Simes’ procedure was used to test for multiple comparisons. Results: 14.9% of children reported wheeze in the last 12 months, 16% rhino-conjunctivitis, and 22% eczema. Eczema was negatively associated with consumption of fresh fruits and pulses three or more times per week (adjusted Odds ratio (aOR): 0.64; 95% Confidence Interval (CI): 0.49 to 0.83; p value = 0.004; and aOR: 0.62, 95% CI: 0.47 to 0.80; p value < 0.001, respectively). Current wheeze was negatively associated with intake of potatoes (aOR: 0.44, 95% CI: 0.31 to 0.62, p value = 0.005), whilst this outcome was positively associated with consumption of fast food (aOR: 1.76, 95% CI: 1.32 to 2.35, p value = 0.001). These associations remained statistically significant after controlling for multiple comparisons. Conclusions: A traditional diet might have a protective effect against eczema and wheeze in Colombian children, whilst intake of fast foods increases this risk

    Mathematical model of a telomerase transcriptional regulatory network developed by cell-based screening: analysis of inhibitor effects and telomerase expression mechanisms

    Get PDF
    Cancer cells depend on transcription of telomerase reverse transcriptase (TERT). Many transcription factors affect TERT, though regulation occurs in context of a broader network. Network effects on telomerase regulation have not been investigated, though deeper understanding of TERT transcription requires a systems view. However, control over individual interactions in complex networks is not easily achievable. Mathematical modelling provides an attractive approach for analysis of complex systems and some models may prove useful in systems pharmacology approaches to drug discovery. In this report, we used transfection screening to test interactions among 14 TERT regulatory transcription factors and their respective promoters in ovarian cancer cells. The results were used to generate a network model of TERT transcription and to implement a dynamic Boolean model whose steady states were analysed. Modelled effects of signal transduction inhibitors successfully predicted TERT repression by Src-family inhibitor SU6656 and lack of repression by ERK inhibitor FR180204, results confirmed by RT-QPCR analysis of endogenous TERT expression in treated cells. Modelled effects of GSK3 inhibitor 6-bromoindirubin-3′-oxime (BIO) predicted unstable TERT repression dependent on noise and expression of JUN, corresponding with observations from a previous study. MYC expression is critical in TERT activation in the model, consistent with its well known function in endogenous TERT regulation. Loss of MYC caused complete TERT suppression in our model, substantially rescued only by co-suppression of AR. Interestingly expression was easily rescued under modelled Ets-factor gain of function, as occurs in TERT promoter mutation. RNAi targeting AR, JUN, MXD1, SP3, or TP53, showed that AR suppression does rescue endogenous TERT expression following MYC knockdown in these cells and SP3 or TP53 siRNA also cause partial recovery. The model therefore successfully predicted several aspects of TERT regulation including previously unknown mechanisms. An extrapolation suggests that a dominant stimulatory system may programme TERT for transcriptional stability

    T-lymphocyte subsets in liver tissues of patients with primary biliary cirrhosis (PBC), patients with primary sclerosing cholangitis (PSC), and normal controls

    Get PDF
    T lymphocytes infiltrating hepatic tissues were typed and enumerated in liver biopsies of patients with primary biliary cirrhosis (PBC), patients with primary sclerosing cholangitis (PSC), and normal controls using monoclonal antibodies and the avidin-biotin-immunoperoxidase technique. The peripheral blood mononuclear cells were studied also by flow cytometry. In PBC, T lymphocytes were decreased (P<0.001) in the blood [absolute number was 426±200 (SE) vs 1351±416 in 15 controls], as was the helper/suppressor (T4/T8) ratio (1.0±0.1 vs normal 2.3±0.3). T lymphocytes were the most numerous mononuclear cells infiltrating portal areas of PBC livers: 749±93/5 high-power fields (HPF) in PBC vs 98±15/5 HPF (P<0.01) in controls. The T4/T8 ratios varied from 0.9 to 2.3 (mean, 1.8±0.1) in the portal triads (normal mean, 1.6±0.1), with the T4+ cells accounting for more than 75% of infiltrating T cells. In contrast, the mean T4/T8 ratio in portal triads of PSC was reduced (1.0±0.3) due to a significant increase (P<0.001) in the number of T8+ cells. The T cells around and in the walls of bile ducts in PBC were mostly T8+, and the T4/T8 ratio was 0.8±0.2. No T8+ cells were seen in this location in PSC and normal livers. Few mononuclear cells were present in hepatic lobules. Subtyping of T lymphocytes in liver tissues of patients with PBC and PSC may be helpful in the differential pathologic diagnosis. In patients with advanced PBC, a decrease in T4+ cells in the blood appeared to be accompanied by their accumulation in the portal triads. In contrast, T8+ cells accumulated preferentially around bile ducts. © 1984 Plenum Publishing Corporation

    Central role for MCP-1/CCL2 in injury-induced inflammation revealed by in vitro, in silico, and clinical studies

    Get PDF
    The translation of in vitro findings to clinical outcomes is often elusive. Trauma/hemorrhagic shock (T/HS) results in hepatic hypoxia that drives inflammation. We hypothesize that in silico methods would help bridge in vitro hepatocyte data and clinical T/HS, in which the liver is a primary site of inflammation. Primary mouse hepatocytes were cultured under hypoxia (1% O 2) or normoxia (21% O2) for 1-72 h, and both the cell supernatants and protein lysates were assayed for 18 inflammatory mediators by Luminex™ technology. Statistical analysis and data-driven modeling were employed to characterize the main components of the cellular response. Statistical analyses, hierarchical and k-means clustering, Principal Component Analysis, and Dynamic Network Analysis suggested MCP-1/CCL2 and IL-1α as central coordinators of hepatocyte-mediated inflammation in C57BL/6 mouse hepatocytes. Hepatocytes from MCP-1-null mice had altered dynamic inflammatory networks. Circulating MCP-1 levels segregated human T/HS survivors from non-survivors. Furthermore, T/HS survivors with elevated early levels of plasma MCP-1 post-injury had longer total lengths of stay, longer intensive care unit lengths of stay, and prolonged requirement for mechanical ventilation vs. those with low plasma MCP-1. This study identifies MCP-1 as a main driver of the response of hepatocytes in vitro and as a biomarker for clinical outcomes in T/HS, and suggests an experimental and computational framework for discovery of novel clinical biomarkers in inflammatory diseases. © 2013 Ziraldo et al

    Pegylated Interferon and Ribavirin Dosing Strategies to Enhance Sustained Virologic Response

    Get PDF
    Hepatitis C virus (HCV) affects about 170 million people worldwide and is the most common chronic blood borne infection in the United States. Since the advent of blood screening protocols in the early 1990s, injection drug use has become the leading cause of infection. Hepatitis C can have both hepatic and nonhepatic manifestations of infection. Hepatic manifestations include hepatic fibrosis, cirrhosis, liver cancer, and liver failure. The standard treatment for chronic HCV is combination therapy with pegylated interferon-α and ribavirin. Although pegylated interferon and ribavirin has been used against HCV for close to a decade, advances in therapy have centered on doses and treatment durations. There has been increasing interest in applying on-treatment response or viral kinetics to predict antiviral response rates and shape therapeutic intervention. Protease inhibitors are a promising adjuvant to combination therapy, but their efficacy and safety are still under investigation

    Comparative genomic analyses identify common molecular pathways modulated upon exposure to low doses of arsenic and cadmium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exposure to the toxic metals arsenic and cadmium is associated with detrimental health effects including cancers of various organs. While arsenic and cadmium are well known to cause adverse health effects at high doses, the molecular impact resulting from exposure to environmentally relevant doses of these metals remains largely unexplored.</p> <p>Results</p> <p>In this study, we examined the effects of <it>in vitro </it>exposure to either arsenic or cadmium in human TK6 lymphoblastoid cells using genomics and systems level pathway mapping approaches. A total of 167 genes with differential expression were identified following exposure to either metal with surprisingly no overlap between the two. Real-time PCR was used to confirm target gene expression changes. The gene sets were overlaid onto protein-protein interaction maps to identify metal-induced transcriptional networks. Interestingly, both metal-induced networks were significantly enriched for proteins involved in common biological processes such as tumorigenesis, inflammation, and cell signaling. These findings were further supported by gene set enrichment analysis.</p> <p>Conclusions</p> <p>This study is the first to compare the transcriptional responses induced by low dose exposure to cadmium and arsenic in human lymphoblastoid cells. These results highlight that even at low levels of exposure both metals can dramatically influence the expression of important cellular pathways.</p
    corecore