1,135 research outputs found

    Ranking Investment Projects

    Get PDF
    This paper describes conditions under which one investment project dominates a second project in terms of net present value, irrespective of the choice of the discount rate. The resulting partial ordering of projects has certain similarities to stochastic dominance. However, the structure of the net present value function leads to characterizations that are quite specific to this context. Our theorems use Bernstein's (1915) innovative results on the representation and approximation of polynomials, as well as other general results from the theory of equations, to characterize the partial ordering. We also show how the ranking is altered when the range of discount rates is limited or the rate varies period by period.

    Indication of a Co-Existing Phase of Quarks and Hadrons in Nucleus - Nucleus Collisions

    Full text link
    The variation of average transverse mass of identified hadrons with charge multiplicity have been studied for AGS, SPS and RHIC energies. The observation of a plateau in the average transverse mass for multiplicities corresponding to SPS energies is attributed to the formation of a co-existence phase of quark gluon plasma and hadrons. A subsequent rise for RHIC energies may indicate a deconfined phase in the initial state. Several possibilities which can affect the average transverse mass are discussed. Constraints on the initial temperature and thermalization time have been put from the various experimental data available at SPS energies.Comment: 4 pages and 2 figures, title changed and draft modifie

    Photons from Nucleus-Nucleus Collisions at Ultra-Relativistic Energies

    Full text link
    We compare the photon emission rates from hot hadronic matter with in-medium mass shift and Quark Gluon Plasma (QGP). It is observed that the WA98 data can be well reproduced by hadronic initial state with initial temperature ∌200\sim 200 MeV if the universal scaling of temperature dependent hadronic masses are assumed and the evolution of temperature with time is taken from transport model or (3+1) dimensional hydrodynamics. The data can also be reproduced by QGP initial state with similar initial temperature and non-zero initial radial velocity.Comment: Talk given in the International Nuclear Physics Conference, at the University of California, Berkeley, USA, during July 30 - August 3, 200

    Continuous transition of social efficiencies in the stochastic strategy Minority Game

    Full text link
    We show that in a variant of the Minority Game problem, the agents can reach a state of maximum social efficiency, where the fluctuation between the two choices is minimum, by following a simple stochastic strategy. By imagining a social scenario where the agents can only guess about the number of excess people in the majority, we show that as long as the guess value is sufficiently close to the reality, the system can reach a state of full efficiency or minimum fluctuation. A continuous transition to less efficient condition is observed when the guess value becomes worse. Hence, people can optimize their guess value for excess population to optimize the period of being in the majority state. We also consider the situation where a finite fraction of agents always decide completely randomly (random trader) as opposed to the rest of the population that follow a certain strategy (chartist). For a single random trader the system becomes fully efficient with majority-minority crossover occurring every two-days interval on average. For just two random traders, all the agents have equal gain with arbitrarily small fluctuations.Comment: 8 pages, 6 fig

    Precise Variational Calculation For The Doubly Excited State (2p^2)^3P^e of Helium

    Full text link
    Highly precise variational calculations of non-relativistic energies of the (2p^2)^3P^e state of Helium atom are presented.We get an upper bound energy E=-0.71050015565678 a.u.,the lowest yet obtained.Comment: 5 pages, 1 tabl

    Chaos modified wall formula damping of the surface motion of a cavity undergoing fissionlike shape evolutions

    Get PDF
    The chaos weighted wall formula developed earlier for systems with partially chaotic single particle motion is applied to large amplitude collective motions similar to those in nuclear fission. Considering an ideal gas in a cavity undergoing fission-like shape evolutions, the irreversible energy transfer to the gas is dynamically calculated and compared with the prediction of the chaos weighted wall formula. We conclude that the chaos weighted wall formula provides a fairly accurate description of one body dissipation in dynamical systems similar to fissioning nuclei. We also find a qualitative similarity between the phenomenological friction in nuclear fission and the chaos weighted wall formula. This provides further evidence for one body nature of the dissipative force acting in a fissioning nucleus.Comment: 8 pages (RevTex), 7 Postscript figures, to appear in Phys.Rev.C., Section I (Introduction) is modified to discuss some other works (138 kb

    Probing the QGP Phase Boundary with Thermal Properties of ϕ\phi Mesons

    Full text link
    A novel attempt has been made to probe the QCD phase boundary by using the experimental data for transverse momenta of {\phi} mesons produced in nuclear collisions at AGS, SPS and RHIC energies. The data are confronted with simple thermodynamic expectations and lattice QCD results. The experimental data indicate a first-order phase transition, with a mixed phase stretching the energy density between \sim1 and 3.2 GeV/fm3 corresponding to SPS energies.Comment: 8-pages, 3-figs, Replaced with the published versio

    Regional Climate Trends and Scenarios for the U.S. National Climate Assessment Part 4. Climate of the U.S. Great Plains

    Get PDF
    This document is one of series of regional climate descriptions designed to provide input that can be used in the development of the National Climate Assessment (NCA). As part of a sustained assessment approach, it is intended that these documents will be updated as new and well-vetted model results are available and as new climate scenario needs become clear. It is also hoped that these documents (and associated data and resources) are of direct benefit to decision makers and communities seeking to use this information in developing adaptation plans. There are nine reports in this series, one each for eight regions defined by the NCA, and one for the contiguous U.S. The eight NCA regions are the Northeast, Southeast, Midwest, Great Plains, Northwest, Southwest, Alaska, and Hawai‘i/Pacific Islands. These documents include a description of the observed historical climate conditions for each region and a set of climate scenarios as plausible futures – these components are described in more detail below. While the datasets and simulations in these regional climate documents are not, by themselves, new, (they have been previously published in various sources), these documents represent a more complete and targeted synthesis of historical and plausible future climate conditions around the specific regions of the NCA. There are two components of these descriptions. One component is a description of the historical climate conditions in the region. The other component is a description of the climate conditions associated with two future pathways of greenhouse gas emissions

    Magnetoelastic effects in Jahn-Teller distorted CrF2_2 and CuF2_2 studied by neutron powder diffraction

    Full text link
    We have studied the temperature dependence of crystal and magnetic structures of the Jahn-Teller distorted transition metal difluorides CrF2_2 and CuF2_2 by neutron powder diffraction in the temperature range 2-280 K. The lattice parameters and the unit cell volume show magnetoelastic effects below the N\'eel temperature. The lattice strain due to the magnetostriction effect couples with the square of the order parameter of the antiferromagnetic phase transition. We also investigated the temperature dependence of the Jahn-Teller distortion which does not show any significant effect at the antiferromagnetic phase transition but increases linearly with increasing temperature for CrF2_2 and remains almost independent of temperature in CuF2_2. The magnitude of magnetovolume effect seems to increase with the low temperature saturated magnetic moment of the transition metal ions but the correlation is not at all perfect
    • 

    corecore