659 research outputs found

    Analysis of the Equilibrium and Kinetics of the Ankyrin Repeat Protein Myotrophin

    Full text link
    We apply the Wako-Saito-Munoz-Eaton model to the study of Myotrophin, a small ankyrin repeat protein, whose folding equilibrium and kinetics have been recently characterized experimentally. The model, which is a native-centric with binary variables, provides a finer microscopic detail than the Ising model, that has been recently applied to some different repeat proteins, while being still amenable for an exact solution. In partial agreement with the experiments, our results reveal a weakly three-state equilibrium and a two-state-like kinetics of the wild type protein despite the presence of a non-trivial free-energy profile. These features appear to be related to a careful "design" of the free-energy landscape, so that mutations can alter this picture, stabilizing some intermediates and changing the position of the rate-limiting step. Also the experimental findings of two alternative pathways, an N-terminal and a C-terminal one, are qualitatively confirmed, even if the variations in the rates upon the experimental mutations cannot be quantitatively reproduced. Interestingly, folding and unfolding pathway appear to be different, even if closely related: a property that is not generally considered in the phenomenological interpretation of the experimental data.Comment: 27 pages, 7 figure

    Multiplicity of 5' Cap Structures Present on Short RNAs

    Get PDF
    Most RNA molecules are co- or post-transcriptionally modified to alter their chemical and functional properties to assist in their ultimate biological function. Among these modifications, the addition of 5' cap structure has been found to regulate turnover and localization. Here we report a study of the cap structure of human short (<200 nt) RNAs (sRNAs), using sequencing of cDNA libraries prepared by enzymatic pretreatment of the sRNAs with cap sensitive-specificity, thin layer chromatographic (TLC) analyses of isolated cap structures and mass spectrometric analyses for validation of TLC analyses. Processed versions of snoRNAs and tRNAs sequences of less than 50 nt were observed in capped sRNA libraries, indicating additional processing and recapping of these annotated sRNAs biotypes. We report for the first time 2,7 dimethylguanosine in human sRNAs cap structures and surprisingly we find multiple type 0 cap structures (mGpppC, 7mGpppG, GpppG, GpppA, and 7mGpppA) in RNA length fractions shorter than 50 nt. Finally, we find the presence of additional uncharacterized cap structures that wait determination by the creation of needed reference compounds to be used in TLC analyses. These studies suggest the existence of novel biochemical pathways leading to the processing of primary and sRNAs and the modifications of their RNA 5' ends with a spectrum of chemical modifications

    Friend of Prmt1, FOP is a novel component of the nuclear SMN complex isolated using biotin affinity purification

    Get PDF
    SMN (survival motor neuron protein) complexes are essential for the biogenesis of uridine-rich small nuclear ribonucleoproteins (UsnRNPs). During the biogenesis, the SMN complexes bound to UsnRNPs are transported from the cytoplasm to the nucleus, and moved to Cajal body (bodies)/Gems (Cajal/Gems) where the SMN complexes- UsnRNPs are subjected to additional chemical modifications and dissociated to the SMN complexes and the mature UsnRNPs. Although the mature UsnRNPs are assembled into spliceosome with newly transcribed pre-mRNA in the perichromatin fibrils at the chromatin, the role of the dissociated nuclear SMN complexes remains undetermined. In this study, we identified Friend of Prmt1 (FOP; chromatin target of Prmt1, CHTOP; C1orf77) as a novel component of the nuclear SMN complexes by the biotin affinity purification, coupled with the mass spectrometry-based protein identification. FOP was associated with SMN, Gemines 2, 3, 4, 6, and 8, unrip, and fragile X mental retardation 1 protein (FMR1), as well as with U5and U6 snRNAs in the nucleus, but not with Sm proteins, Gemin5, coilin, and U1 and U2snRNAs. Using the quantitative proteomic method with SILAC coupled with RNA interference, we also showed that FOP is required for the association of the SMN complexes with hnRNPs, histone proteins, and various RNA-binding proteins. It is reported that FOP localizes mainly in the nuclear speckles, binds chromatin, and plays a role in mRNA transcriptional regulation. Our present data suggest that the nuclear SMN complex containing FOP participates in the process of mRNA post-transcriptional regulation

    Chimeric 14-3-3 proteins for unraveling interactions with intrinsically disordered partners

    Get PDF
    In eukaryotes, several "hub" proteins integrate signals from different interacting partners that bind through intrinsically disordered regions. The 14-3-3 protein hub, which plays wide-ranging roles in cellular processes, has been linked to numerous human disorders and is a promising target for therapeutic intervention. Partner proteins usually bind via insertion of a phosphopeptide into an amphipathic groove of 14-3-3. Structural plasticity in the groove generates promiscuity allowing accommodation of hundreds of different partners. So far, accurate structural information has been derived for only a few 14-3-3 complexes with phosphopeptide-containing proteins and a variety of complexes with short synthetic peptides. To further advance structural studies, here we propose a novel approach based on fusing 14-3-3 proteins with the target partner peptide sequences. Such chimeric proteins are easy to design, express, purify and crystallize. Peptide attachment to the C terminus of 14-3-3 via an optimal linker allows its phosphorylation by protein kinase A during bacterial co-expression and subsequent binding at the amphipathic groove. Crystal structures of 14-3-3 chimeras with three different peptides provide detailed structural information on peptide-14-3-3 interactions. This simple but powerful approach, employing chimeric proteins, can reinvigorate studies of 14-3-3/phosphoprotein assemblies, including those with challenging low-affinity partners, and may facilitate the design of novel biosensors

    Large-scale comparative genomic ranking of taxonomically restricted genes (TRGs) in bacterial and archaeal genomes

    Get PDF
    BACKGROUND: Lineage-specific, or taxonomically restricted genes (TRGs), especially those that are species and strain-specific, are of special interest because they are expected to play a role in defining exclusive ecological adaptations to particular niches. Despite this, they are relatively poorly studied and little understood, in large part because many are still orphans or only have homologues in very closely related isolates. This lack of homology confounds attempts to establish the likelihood that a hypothetical gene is expressed and, if so, to determine the putative function of the protein. METHODOLOGY/PRINCIPAL FINDINGS: We have developed "QIPP" ("Quality Index for Predicted Proteins"), an index that scores the "quality" of a protein based on non-homology-based criteria. QIPP can be used to assign a value between zero and one to any protein based on comparing its features to other proteins in a given genome. We have used QIPP to rank the predicted proteins in the proteomes of Bacteria and Archaea. This ranking reveals that there is a large amount of variation in QIPP scores, and identifies many high-scoring orphans as potentially "authentic" (expressed) orphans. There are significant differences in the distributions of QIPP scores between orphan and non-orphan genes for many genomes and a trend for less well-conserved genes to have lower QIPP scores. CONCLUSIONS: The implication of this work is that QIPP scores can be used to further annotate predicted proteins with information that is independent of homology. Such information can be used to prioritize candidates for further analysis. Data generated for this study can be found in the OrphanMine at http://www.genomics.ceh.ac.uk/orphan_mine

    TDP-43 stabilises the processing intermediates of mitochondrial transcripts

    Get PDF
    The 43-kDa trans-activating response region DNA-binding protein 43 (TDP-43) is a product of a causative gene for amyotrophic lateral sclerosis (ALS). Despite of accumulating evidence that mitochondrial dysfunction underlies the pathogenesis of TDP-43–related ALS, the roles of wild-type TDP-43 in mitochondria are unknown. Here, we show that the small TDP-43 population present in mitochondria binds directly to a subset of mitochondrial tRNAs and precursor RNA encoded in L-strand mtDNA. Upregulated expression of TDP-43 stabilised the processing intermediates of mitochondrial polycistronic transcripts and their products including the components of electron transport and 16S mt-rRNA, similar to the phenotype observed in cells deficient for mitochondrial RNase P. Conversely, TDP-43 deficiency reduced the population of processing intermediates and impaired mitochondrial function. We propose that TDP-43 has a novel role in maintaining mitochondrial homeostasis by regulating the processing of mitochondrial transcripts

    Energy-Based Stability Margin Computation Incorporating Effects of ULTCs

    Full text link

    Cell bank characterization and fermentation optimization for production of recombinant heavy chain C-terminal fragment of botulinum neurotoxin serotype E (rBoNTE(H\u3csub\u3ec\u3c/sub\u3e): Antigen E) by \u3ci\u3ePichia pastoris\u3c/i\u3e

    Get PDF
    A process was developed for production of a candidate vaccine antigen, recombinant C-terminal heavy chain fragment of the botulinum neurotoxin serotype E, rBoNTE(Hc)in Pichia pastoris. P. pastoris strain GS115 was transformed with the rBoNTE(Hc) gene inserted into pHILD4 Escherichia coli—P. pastoris shuttle plasmid. The clone was characterized for genetic stability, copy number, and BoNTE(Hc) sequence. Expression of rBoNTE(Hc) from the Mut+ HIS4 clone was confirmed in the shake-flask, prior to developing a fed-batch fermentation process at 5 and 19 L scale. The fermentation process consists of a glycerol growth phase in batch and fed-batch mode using a defined medium followed by a glycerol/methanol transition phase for adaptation to growth on methanol and a methanol induction phase resulting in the production of rBoNTE(Hc). Specific growth rate, ratio of growth to induction phase, and time of induction were critical for optimal rBoNTE(Hc) production and minimal proteolytic degradation. A computer-controlled exponential growth model was used for process automation and off-gas analysis was used for process monitoring. The optimized process had an induction time of 9 h on methanol and produced up to 3 mg of rBoNTE(Hc) per gram wet cell mass as determined by HPLC and Western blot analysis
    corecore