49 research outputs found

    Crowdfunding Dynamics Tracking: A Reinforcement Learning Approach

    Full text link
    Recent years have witnessed the increasing interests in research of crowdfunding mechanism. In this area, dynamics tracking is a significant issue but is still under exploration. Existing studies either fit the fluctuations of time-series or employ regularization terms to constrain learned tendencies. However, few of them take into account the inherent decision-making process between investors and crowdfunding dynamics. To address the problem, in this paper, we propose a Trajectory-based Continuous Control for Crowdfunding (TC3) algorithm to predict the funding progress in crowdfunding. Specifically, actor-critic frameworks are employed to model the relationship between investors and campaigns, where all of the investors are viewed as an agent that could interact with the environment derived from the real dynamics of campaigns. Then, to further explore the in-depth implications of patterns (i.e., typical characters) in funding series, we propose to subdivide them into fast-growing\textit{fast-growing} and slow-growing\textit{slow-growing} ones. Moreover, for the purpose of switching from different kinds of patterns, the actor component of TC3 is extended with a structure of options, which comes to the TC3-Options. Finally, extensive experiments on the Indiegogo dataset not only demonstrate the effectiveness of our methods, but also validate our assumption that the entire pattern learned by TC3-Options is indeed the U-shaped one

    SemProtector: A Unified Framework for Semantic Protection in Deep Learning-based Semantic Communication Systems

    Full text link
    Recently proliferated semantic communications (SC) aim at effectively transmitting the semantics conveyed by the source and accurately interpreting the meaning at the destination. While such a paradigm holds the promise of making wireless communications more intelligent, it also suffers from severe semantic security issues, such as eavesdropping, privacy leaking, and spoofing, due to the open nature of wireless channels and the fragility of neural modules. Previous works focus more on the robustness of SC via offline adversarial training of the whole system, while online semantic protection, a more practical setting in the real world, is still largely under-explored. To this end, we present SemProtector, a unified framework that aims to secure an online SC system with three hot-pluggable semantic protection modules. Specifically, these protection modules are able to encrypt semantics to be transmitted by an encryption method, mitigate privacy risks from wireless channels by a perturbation mechanism, and calibrate distorted semantics at the destination by a semantic signature generation method. Our framework enables an existing online SC system to dynamically assemble the above three pluggable modules to meet customized semantic protection requirements, facilitating the practical deployment in real-world SC systems. Experiments on two public datasets show the effectiveness of our proposed SemProtector, offering some insights of how we reach the goal of secrecy, privacy and integrity of an SC system. Finally, we discuss some future directions for the semantic protection.Comment: Accepted by Communications Magazin

    Sample adaptive multiple kernel learning for failure prediction of railway points

    Full text link
    © 2019 Association for Computing Machinery. Railway points are among the key components of railway infrastructure. As a part of signal equipment, points control the routes of trains at railway junctions, having a significant impact on the reliability, capacity, and punctuality of rail transport. Meanwhile, they are also one of the most fragile parts in railway systems. Points failures cause a large portion of railway incidents. Traditionally, maintenance of points is based on a fixed time interval or raised after the equipment failures. Instead, it would be of great value if we could forecast points' failures and take action beforehand, min-imising any negative effect. To date, most of the existing prediction methods are either lab-based or relying on specially installed sensors which makes them infeasible for large-scale implementation. Besides, they often use data from only one source. We, therefore, explore a new way that integrates multi-source data which are ready to hand to fulfil this task. We conducted our case study based on Sydney Trains rail network which is an extensive network of passenger and freight railways. Unfortunately, the real-world data are usually incomplete due to various reasons, e.g., faults in the database, operational errors or transmission faults. Besides, railway points differ in their locations, types and some other properties, which means it is hard to use a unified model to predict their failures. Aiming at this challenging task, we firstly constructed a dataset from multiple sources and selected key features with the help of domain experts. In this paper, we formulate our prediction task as a multiple kernel learning problem with missing kernels. We present a robust multiple kernel learning algorithm for predicting points failures. Our model takes into account the missing pattern of data as well as the inherent variance on different sets of railway points. Extensive experiments demonstrate the superiority of our algorithm compared with other state-of-the-art methods

    Significant Impact of Reactive Chlorine on Complex Air Pollution Over the Yangtze River Delta Region, China

    Get PDF
    27 pags., 17 figs., 3 tabs.The chlorine radical (Cl) plays a crucial role in the formation of secondary air pollutants by determining the total atmospheric oxidative capacity (AOC). However, there are still large discrepancies among studies on chlorine chemistry, mainly due to uncertainties from three aspects: (a) Anthropogenic emissions of reactive chlorine species from disinfectant usage are typically overlooked. (b) The heterogeneous reaction uptake coefficients used in air quality models resulted in certain differences. (c) The co-effect of anthropogenic and natural emissions is rarely investigated. In this study, the Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) modeling system (updated with 21 new reactions and a comprehensive emissions inventory) was used to simulate the combined impact of chlorine emissions on the air quality of a coastal city cluster in the Yangtze River Delta (YRD) region. The results indicate that the new emissions of reactive chlorine and the updated gas-phase and heterogeneous chlorine chemistry can significantly enhance the AOC by 21.3%, 8.7%, 43.3%, and 58.7% in spring, summer, autumn, and winter, respectively. This is more evident in inland areas with high Cl concentrations. Our updates to the chlorine chemistry also increases the monthly mean maximum daily 8-hr average (MDA 8) O3 mixing ratio by 4.1–7.0 ppbv in different seasons. Additionally, chlorine chemistry promotes the formation of fine particulate matter (PM2.5), with maximum monthly average enhancements of 4.7–13.3 Όg/m3 in different seasons. This study underlines the significance of adding full chlorine emissions and updating chlorine chemistry in air quality models, and demonstrates that chlorine chemistry may significantly impact air quality over coastal regions.This research is supported by the National Natural Science Foundation of China under Grant 42075144. The CSIC team is supported by the European Research Council Executive Agency under the European Union's Horizon 2020 Research and Innovation Programme (Project ERC-2016- COG 726349 CLIMAHAL). The HKPolyU team is supported by the Hong Kong Research Grants Council (Project T24-504/17-N). This work is supported by Shanghai Technical Service Center of Science and Engineering Computing, Shanghai University.Peer reviewe

    A multimodal cell census and atlas of the mammalian primary motor cortex

    Get PDF
    ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties

    Thermal behavior and gelling interactions of Mesona Blumes gum and rice starch mixture

    No full text
    In this research, thermal behavior and gelling interactions of Mesona Blumes gum (MBG)/rice starch mixture were extensively investigated. MBG/rice starch gel displayed significant endothermal and exothermal properties at different MBG concentrations, indicating essential interactions between MBG and rice starch. In addition, the gelling interaction between MBG and rice starch was studied by using hydrogen-bond forming agents (1,4-butanediol, ethane-1,2-diol, glycerol) and hydrogen-bond breaking agents (urea, tetramethyl urea, ethanol, methanol) on rheological spectra. The results indicated that the hydrogen bond between MBG, rice starch and water might be the major force of maintaining the complete structure of the mixed gel. Their hypothetic interactions have been schemed in computer using hyperchem 8.0

    Surface crack treatment of concrete via nano-modified microbial carbonate precipitation

    No full text
    Abstract As a new concrete crack patching technology, microbial self-healing slurries offer favourable characteristics including non-pollution, ecological sustainability and good compatibility with concrete. In this paper, a nano-sio2-modified microbial bacteria liquid, combined with sodium alginate and polyvinyl alcohol, was used to prepare a nano-modified microbial self-healing slurry. This slurry was used to coat concrete under negative pressure in order to verify its restoration effect, and the micromorphology of the resulting microbial mineralization products was observed. The results revealed that patching the concrete using the nano-modified microbial slurry significantly improved its permeability, and increased its carbonization resistance by three times in comparison with the control group. Through a combination of Scanning electron microscopy (SEM) and X-ray diffraction (XRD) observation, it was determined that the microbial mineralization reaction products were mainly calcite crystals, which, integrated with the nano-sio2, sodium alginate and polyvinyl alcohol at the microscopic level, filled the internal pores of concrete, thus improving its durability

    Digesting commercial clips from TV streams

    No full text
    A commercial system that performs syntactic and semantic analysis during a TV advertising break could facilitate innovative new applications, such as an intelligent set-top box that enhances the ability of viewers to monitor and manage commercials from TV streams

    High Expression of Tumor HLA-DR Predicts Better Prognosis and Response to Anti-PD-1 Therapy in Laryngeal Squamous Cell Carcinoma

    No full text
    Background: HLA-DR is expressed in epithelial and several types of tumor cells. However, the correlation between tumor-expressed HLA-DR (teHLA-DR) and patient outcome as well as its regulation on the tumor microenvironment (TME) of laryngeal squamous cell carcinoma (LSCC) are yet to be elucidated. Methods: Hematoxylin and eosin (HE) staining were performed to define the tumor nest and stroma of LSCC tissue microarrays. teHLA-DR tumor cell, CD4+ and CD8+ tumor-infiltrating T lymphocytes (TITLs) were obtained and analyzed through double-labeling immunofluorescence and immunohistochemical staining. The recurrence-free (RFS) and overall survival (OS) curves were plotted using the Kaplan-Meier method and tested by the log-rank test method. Expression of teHLA-DR+ tumor cells and infiltration of T lymphocytes and their corresponding subgroups were analyzed by flow cytometry using fresh LSCC tissue samples. Results: Our research discovered elevated expressions of multiple MHC-II-related genes in tumor compared to the adjacent normal tissue samples of LSCC patients. We also found that patients in the teHLA-DR high-expression group (teHLA-DRhigh) tend to have less tumor recurrence and better survival outcomes compared to those in the teHLA-DRlow group. Intriguingly, teHLA-DR+ tumor cells had significantly higher PD-L1 and PD-L2 expression and their TME showed increased infiltrated T lymphocytes (TITLs). Flow cytometry analysis and IHC staining indicated that CD4+ TITLs but not CD3+ total TITLs or CD8+ TITLs were significantly enriched in teHLA-DR+ tumors. Conclusions: teHLA-DR may be a predictive marker for favorable prognosis and response to anti-PD-1/PD-L1 therapy of LSCC, possibly due to the increased CD4+ TITLs in the TME
    corecore