103 research outputs found

    Cysteine oxidation targets peroxiredoxins 1 and 2 for exosomal release through a novel mechanism of redox-dependent secretion

    Get PDF
    Non-classical protein secretion is of major importance as a number of cytokines and inflammatory mediators are secreted via this route. Current evidence indicates that there are several mechanistically distinct methods of non-classical secretion. We have recently shown that peroxiredoxin (Prdx) 1 and Prdx2 are released by various cells upon exposure to inflammatory stimuli such as LPS or TNF-α. The released Prdx then acts to induce production of inflammatory cytokines. However, Prdx1 and 2 do not have signal peptides and therefore must be secreted by alternative mechanisms as has been postulated for the inflammatory mediators IL-1β and HMGB1. We show here that circulating Prdx1 and 2 are present exclusively as disulphide-linked homodimers. Inflammatory stimuli also induce in vitro release of Prdx1 and 2 as disulfide-linked homodimers. Mutation of cysteines Cys51 or Cys172 (but not Cys70) in Prdx2, and Cys52 or Cys173 (but not Cys71 or Cys83) in Prdx1 prevented dimer formation and this was associated with inhibition of their TNF-α-induced release. Thus, the presence and oxidation of key cysteine residues in these proteins are a prerequisite for their secretion in response to TNF-α and this release can be induced with an oxidant. In contrast, the secretion of the nuclear-associated danger signal HMGB1 is independent of cysteine oxidation, as shown by experiments with a cysteine-free HMGB1 mutant. Release of Prdx1 and 2 is not prevented by inhibitors of the classical secretory pathway; instead, both Prdx1 and 2 are released in exosomes from both HEK cells and monocytic cells. Serum Prdx1 and 2 are also associated with the exosomes. These results describe a novel pathway of protein secretion mediated by cysteine oxidation that underlines the importance of redox-dependent signalling mechanisms in inflammation

    Aldehyde dehydrogenase 1A1 and gelsolin identified as novel invasion-modulating factors in conditioned medium of pancreatic cancer cells

    Get PDF
    Conditioned medium (CM) from clonal sub-populations of the pancreatic cancer cell line, MiaPaCa-2 with differing invasive abilities, were examined for their effect on in vitro invasion. Conditioned medium from Clone #3 (CM#3) strongly promoted invasion, while CM from Clone #8 (CM#8) inhibited invasion in vitro. 2D DIGE followed by MALDI-TOF MS analysis of CM#3 and CM#8 identified 41 proteins which were differentially regulated; 27 proteins were down-regulated and 14 proteins up-regulated in the invasion-promoting CM#3 when compared to CM#8. Western blotting analysis confirmed the down-regulated expression of gelsolin and the up-regulation of aldehyde dehydrogenase 1A1 in CM#3. Down-regulation of aldehyde dehydrogenase 1A1 in Clone #3 CM and gelsolin levels in Clone #8 CM by siRNA transfection revealed an important involvement of these proteins in promoting and inhibiting invasion in these pancreatic cancer cell lines

    Coherent control of ac Stark allowed transition in Λ\Lambda system

    Full text link
    We show that quantum-interference-related phenomena, such as electromagnetically induced transparency, gain without inversion and enhanced refractive index may occur on electric-dipole forbidden transitions. Gain/dispersion characteristics of such transitions strongly depend upon the relative phase between the driving and probe fields. Unlike allowed transitions, gain/absorption behavior of forbidden transitions exhibit antisymmetric feature on the Rabi sidebands. Absorption/gain spectra possess extremely narrow sub-natural resonances.Comment: 5 pages, 5 figure

    The uptake of soluble and nanoparticulate imaging isotope in model liver tumours after intra-venous and intra-arterial administration

    No full text
    Delivery of chemotherapeutic drugs to tumours by reformulation as nanoparticles has often been proposed as a means of facilitating increased selective uptake, exploiting the increased permeability of the tumour vasculature. However realisation of this improvement in drug delivery in cancer patients has met with limited success. We have compared tumour uptake of soluble Tc99m-pertechnetate and a colloid of nanoparticles with a Tc99m core, using both intra-venous and intra-arterial routes of administration in a rabbit liver VX2 tumour model. The radiolabelled nanoparticles were tested both in untreated and cationised form. The results from this tumour model in an internal organ show a marked advantage in intra-arterial administration over the intra-venous route, even for the soluble isotope. Tumour accumulation of nanoparticles from arterial administration was augmented by cationisation of the nanoparticle surface with histone proteins, which consistently facilitated selective accumulation within microvessels at the periphery of tumours.Sources of support for this research: Sirtex Medical Ltd, Sydney Australia

    Tunable and noncytotoxic PET/SPECT-MRI multimodality imaging probes using colloidally stable ligand-free superparamagnetic iron oxide nanoparticles

    Get PDF
    Physiologically stable multimodality imaging probes for positron emission tomography/single-photon emission computed tomography (PET/SPECT)-magnetic resonance imaging (MRI) were synthesized using the superparamagnetic maghemite iron oxide (γ-Fe2O3) nanoparticles (SPIONs). The SPIONs were sterically stabilized with a finely tuned mixture of diblock copolymers with either methoxypolyethylene glycol (MPEG) or primary amine NH2 end groups. The radioisotope for PET or SPECT imaging was incorporated with the SPIONs at high temperature. 57Co2+ ions with a long half-life of 270.9 days were used as a model for the radiotracer to study the kinetics of radiolabeling, characterization, and the stability of the radiolabeled SPIONs. Radioactive 67Ga3+ and Cu2+-labeled SPIONs were also produced successfully using the optimized conditions from the 57Co2+-labeling process. No free radioisotopes were detected in the aqueous phase for the radiolabeled SPIONs 1 week after dispersion in phosphate-buffered saline (PBS). All labeled SPIONs were not only well dispersed and stable under physiological conditions but also noncytotoxic in vitro. The ability to design and produce physiologically stable radiolabeled magnetic nanoparticles with a finely controlled number of functionalizable end groups on the SPIONs enables the generation of a desirable and biologically compatible multimodality PET/SPECT-MRI agent on a single T2 contrast MRI probe. © 2017 Dove Press Ltd.This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License

    Sequence determinants of innate immune activation by short interfering RNAs

    Get PDF
    BACKGROUND: Short interfering RNAs (siRNAs) have been shown to induce immune stimulation through a number of different receptors in a range of cell types. In primary cells, both TLR7 and TLR8 have been shown to recognise siRNAs however, despite the identification of a number of TLR7/8 stimulatory RNA motifs, the complete and definitive sequence determinants of TLR7 and TLR8 are yet to be elucidated. RESULTS: A total of 207 siRNA sequences were screened for TLR7/8 stimulation in human PBMCs. There was a significant correlation between the U count of the U-rich strand and the immunostimulatory activity of the duplex. Using siRNAs specifically designed to analyse the effect of base substitutions and hybridisation of the two strands, we found that sequence motifs and the thermodynamic properties of the duplexes appeared to be the major determinants of siRNA immunogenicity and that the strength of the hybridisation interaction between the two strands correlated negatively with immunostimulatory activity. CONCLUSION: The data presented favour a model of TLR7/8 activation by siRNAs, in which the two strands are denatured in the endosome, and single-stranded, U-rich RNA species activate TLR7/8. These findings have relevance to the design of siRNAs, particularly for in vivo or clinical applications

    In vivo tumour imaging employing regional delivery of novel gallium radiolabelled polymer composites

    Get PDF
    Background: Understanding the regional vascular delivery of particles to tumour sites is a prerequisite for developing new diagnostic and therapeutic composites for treatment of oncology patients. We describe a novel imageable 67Ga-radiolabelled polymer composite that is biocompatible in an animal tumour model and can be used for preclinical imaging investigations of the transit of different sized particles through arterial networks of normal and tumour-bearing organs. Results: Radiolabelling of polymer microspheres with 67Ga was achieved using a simple mix and wash method, with tannic acid as an immobilising agent. Final in vitro binding yields after autoclaving averaged 94.7%. In vivo stability of the composite was demonstrated in New Zealand white rabbits by intravenous administration, and intrahepatic artery instillations were made in normal and VX2 tumour implanted rabbit livers. Stability of radiolabel was sufficient for rabbit lung and liver imaging over at least 3 hours and 1 hour respectively, with lung retention of radiolabel over 91%, and retention in both normal and VX2 implanted livers of over 95%. SPECT-CT imaging of anaesthetised animals and planar imaging of excised livers showed visible accumulation of radiolabel in tumours. Importantly, microsphere administration and complete liver dispersal was more easily achieved with 8 μm diameter MS than with 30 μm MS, and the smaller microspheres provided more distinct and localised tumour imaging. Conclusion: This method of producing 67Ga-radiolabelled polymer microspheres is suitable for SPECT-CT imaging of the regional vascular delivery of microspheres to tumour sites in animal models. Sharper distinction of model tumours from normal liver was obtained with smaller MS, and tumour resolution may be further improved by the use of 68Ga instead of 67Ga, to enable PET imaging.The ANU authors acknowledge the collaborative research project support generously provided to ANU by Sirtex Medical Ltd. (Sydney), including donation of a GE Hawkeye Infinia SPECT/CT scanner and a Xeleris image processing system

    Receptor and secreted targets of Wnt-1/β-catenin signalling in mouse mammary epithelial cells

    Get PDF
    BACKGROUND: Deregulation of the Wnt/ β-catenin signal transduction pathway has been implicated in the pathogenesis of tumours in the mammary gland, colon and other tissues. Mutations in components of this pathway result in β-catenin stabilization and accumulation, and the aberrant modulation of β-catenin/TCF target genes. Such alterations in the cellular transcriptional profile are believed to underlie the pathogenesis of these cancers. We have sought to identify novel target genes of this pathway in mouse mammary epithelial cells. METHODS: Gene expression microarray analysis of mouse mammary epithelial cells inducibly expressing a constitutively active mutant of β-catenin was used to identify target genes of this pathway. RESULTS: The differential expression in response to ΔNβ-catenin for five putative target genes, Autotaxin, Extracellular Matrix Protein 1 (Ecm1), CD14, Hypoxia-inducible gene 2 (Hig2) and Receptor Activity Modifying Protein 3 (RAMP3), was independently validated by northern blotting. Each of these genes encodes either a receptor or a secreted protein, modulation of which may underlie the interactions between Wnt/β-catenin tumour cells and between the tumour and its microenvironment. One of these genes, Hig2, previously shown to be induced by both hypoxia and glucose deprivation in human cervical carcinoma cells, was strongly repressed upon ΔNβ-catenin induction. The predicted N-terminus of Hig2 contains a putative signal peptide suggesting it might be secreted. Consistent with this, a Hig2-EGFP fusion protein was able to enter the secretory pathway and was detected in conditioned medium. Mutation of critical residues in the putative signal sequence abolished its secretion. The expression of human HIG2 was examined in a panel of human tumours and was found to be significantly downregulated in kidney tumours compared to normal adjacent tissue. CONCLUSIONS: HIG2 represents a novel non-cell autonomous target of the Wnt pathway which is potentially involved in human cancer

    Hyperphosphorylation and Cleavage at D421 Enhance Tau Secretion

    Get PDF
    It is well established that tau pathology propagates in a predictable manner in Alzheimer’s disease (AD). Moreover, tau accumulates in the cerebrospinal fluid (CSF) of AD’s patients. The mechanisms underlying the propagation of tau pathology and its accumulation in the CSF remain to be elucidated. Recent studies have reported that human tau was secreted by neurons and non-neuronal cells when it was overexpressed indicating that tau secretion could contribute to the spreading of tau pathology in the brain and could lead to its accumulation in the CSF. In the present study, we showed that the overexpression of human tau resulted in its secretion by Hela cells. The main form of tau secreted by these cells was cleaved at the C-terminal. Surprisingly, secreted tau was dephosphorylated at several sites in comparison to intracellular tau which presented a strong immunoreactivity to all phospho-dependent antibodies tested. Our data also revealed that phosphorylation and cleavage of tau favored its secretion by Hela cells. Indeed, the mimicking of phosphorylation at 12 sites known to be phosphorylated in AD enhanced tau secretion. A mutant form of tau truncated at D421, the preferential cleavage site of caspase-3, was also significantly more secreted than wild-type tau. Taken together, our results indicate that hyperphosphorylation and cleavage of tau by favoring its secretion could contribute to the propagation of tau pathology in the brain and its accumulation in the CSF

    Mutations in CENPE define a novel kinetochore-centromeric mechanism for microcephalic primordial dwarfism

    Get PDF
    Defects in centrosome, centrosomal-associated and spindle-associated proteins are the most frequent cause of primary microcephaly (PM) and microcephalic primordial dwarfism (MPD) syndromes in humans. Mitotic progression and segregation defects, microtubule spindle abnormalities and impaired DNA damage-induced G2-M cell cycle checkpoint proficiency have been documented in cell lines from these patients. This suggests that impaired mitotic entry, progression and exit strongly contribute to PM and MPD. Considering the vast protein networks involved in coordinating this cell cycle stage, the list of potential target genes that could underlie novel developmental disorders is large. One such complex network, with a direct microtubule-mediated physical connection to the centrosome, is the kinetochore. This centromeric-associated structure nucleates microtubule attachments onto mitotic chromosomes. Here, we described novel compound heterozygous variants in CENPE in two siblings who exhibit a profound MPD associated with developmental delay, simplified gyri and other isolated abnormalities. CENPE encodes centromere-associated protein E (CENP-E), a core kinetochore component functioning to mediate chromosome congression initially of misaligned chromosomes and in subsequent spindle microtubule capture during mitosis. Firstly, we present a comprehensive clinical description of these patients. Then, using patient cells we document abnormalities in spindle microtubule organization, mitotic progression and segregation, before modeling the cellular pathogenicity of these variants in an independent cell system. Our cellular analysis shows that a pathogenic defect in CENP-E, a kinetochore-core protein, largely phenocopies PCNT-mutated microcephalic osteodysplastic primordial dwarfism-type II patient cells. PCNT encodes a centrosome-associated protein. These results highlight a common underlying pathomechanism. Our findings provide the first evidence for a kinetochore-based route to MPD in humans
    corecore