149 research outputs found

    Childhood infections and asthma: at the crossroads of the hygiene and Barker hypotheses

    Get PDF
    The hygiene hypothesis states that childhood asthma develops as a result of decreased exposure to infectious agents during infancy and early childhood. This results in the persistence of the neonatal T helper lymphocyte 2 immunophenotype, thereby predisposing the child to atopic disease. While multiple studies support the hygiene hypothesis in asthma ontogeny, the evidence remains inconclusive; multiple other environmental exposures in early childhood also alter predisposition to asthma. Moreover, the current paradigm for asthma development extends far beyond simple childhood environmental exposures to include fetal development, genetic predisposition, and interactions of the developmental state and genetics with the environment

    Pharmacogenetics of inhaled corticosteroids and exacerbation risk in adults with asthma

    Get PDF
    Background: Inhaled corticosteroids (ICS) are a cornerstone of asthma treatment. However, their efficacy is characterized by wide variability in individual responses. Objective: We investigated the association between genetic variants and risk of exacerbations in adults with asthma and how this association is affected by ICS treatment. Methods: We investigated the pharmacogenetic effect of 10 single nucleotide polymorphisms (SNPs) selected from the literature, including SNPs previously associated with response to ICS (assessed by change in lung function or exacerbations) and novel asthma risk alleles involved in inflammatory pathways, within all adults with asthma from the Dutch population-based Rotterdam study with replication in the American GERA cohort. The interaction effects of the SNPs with ICS on the incidence of asthma exacerbations were assessed using hurdle models adjusting for age, sex, BMI, smoking and treatment step according to the GINA guidelines. Haplotype analyses were also conducted for the SNPs located on the same chromosome. Results: rs242941 (CRHR1) homozygotes for the minor allele (A) showed a significant, replicated increased risk for frequent exacerbations (RR = 6.11, P < 0.005). In contrast, rs1134481T allele within TBXT (chromosome 6, member of a family associated with embryonic lung development) showed better response with ICS. rs37973 G allele (GLCCI1) showed a significantly poorer response on ICS within the discovery cohort, which was also significant but in the opposite direction in the replication cohort. Conclusion: rs242941 in CRHR1 was associated with poor ICS response. Conversely, TBXT variants were associated with improved ICS response. These associations may reveal specific endotypes, potentially allowing prediction of exacerbation risk and ICS response

    ITGB5 and AGFG1 variants are associated with severity of airway responsiveness

    Get PDF
    Background: Airway hyperresponsiveness (AHR), a primary characteristic of asthma, involves increased airway smooth muscle contractility in response to certain exposures. We sought to determine whether common genetic variants were associated with AHR severity. Methods: A genome-wide association study (GWAS) of AHR, quantified as the natural log of the dosage of methacholine causing a 20% drop in FEV1, was performed with 994 non-Hispanic white asthmatic subjects from three drug clinical trials: CAMP, CARE, and ACRN. Genotyping was performed on Affymetrix 6.0 arrays, and imputed data based on HapMap Phase 2, was used to measure the association of SNPs with AHR using a linear regression model. Replication of primary findings was attempted in 650 white subjects from DAG, and 3,354 white subjects from LHS. Evidence that the top SNPs were eQTL of their respective genes was sought using expression data available for 419 white CAMP subjects. Results: The top primary GWAS associations were in rs848788 (P-value 7.2E-07) and rs6731443 (P-value 2.5E-06), located within the ITGB5 and AGFG1 genes, respectively. The AGFG1 result replicated at a nominally significant level in one independent population (LHS P-value 0.012), and the SNP had a nominally significant unadjusted P-value (0.0067) for being an eQTL of AGFG1. Conclusions: Based on current knowledge of ITGB5 and AGFG1, our results suggest that variants within these genes may be involved in modulating AHR. Future functional studies are required to confirm that our associations represent true biologically significant findings

    Genome-Wide Association Analysis in Asthma Subjects Identifies SPATS2L as a Novel Bronchodilator Response Gene

    Get PDF
    Bronchodilator response (BDR) is an important asthma phenotype that measures reversibility of airway obstruction by comparing lung function (i.e. FEV1) before and after the administration of a short-acting β2-agonist, the most common rescue medications used for the treatment of asthma. BDR also serves as a test of β2-agonist efficacy. BDR is a complex trait that is partly under genetic control. A genome-wide association study (GWAS) of BDR, quantified as percent change in baseline FEV1 after administration of a β2-agonist, was performed with 1,644 non-Hispanic white asthmatic subjects from six drug clinical trials: CAMP, LOCCS, LODO, a medication trial conducted by Sepracor, CARE, and ACRN. Data for 469,884 single-nucleotide polymorphisms (SNPs) were used to measure the association of SNPs with BDR using a linear regression model, while adjusting for age, sex, and height. Replication of primary P-values was attempted in 501 white subjects from SARP and 550 white subjects from DAG. Experimental evidence supporting the top gene was obtained via siRNA knockdown and Western blotting analyses. The lowest overall combined P-value was 9.7E-07 for SNP rs295137, near the SPATS2L gene. Among subjects in the primary analysis, those with rs295137 TT genotype had a median BDR of 16.0 (IQR = [6.2, 32.4]), while those with CC or TC genotypes had a median BDR of 10.9 (IQR = [5.0, 22.2]). SPATS2L mRNA knockdown resulted in increased β2-adrenergic receptor levels. Our results suggest that SPATS2L may be an important regulator of β2-adrenergic receptor down-regulation and that there is promise in gaining a better understanding of the biological mechanisms of differential response to β2-agonists through GWAS

    17q21 variant increases the risk of exacerbations in asthmatic children despite inhaled corticosteroids use

    Get PDF
    _To the Editor,_ Approximately 25% of the asthmatic children suffer from uncontrolled asthma despite regular use of inhaled corticosteroids (ICS). Variation within the 17q21 locus is the strongest genetic determinant for childhood‐onset asthma. Recently, the influence of this locus on treatment outcomes has been shown in several studies. The Pharmacogenomics in Childhood Asthma (PiCA) consortium is a multiethnic consortium that brings together data from ≥14 000 asthmatic children/young adults from 12 different countries to study the pharmacogenomics of uncontrolled asthma despite treatment. In 14 PiCA populations (with over 4000 asthmatic patients), we studied the association between variation in the 17q21 locus, and asthma exacerbations despite ICS use. We specifically focused on rs7216389, a single nucleotide polymorphism (SNP) in the 17q21 locus strongly associated with childhood asthma and initially identified by Moffatt et al. [...
    corecore