420 research outputs found

    Sex differences in the association between plasma copeptin and incident type 2 diabetes: the Prevention of Renal and Vascular Endstage Disease (PREVEND) study

    Get PDF
    AIMS/HYPOTHESIS: Vasopressin plays a role in osmoregulation, glucose homeostasis and inflammation. Therefore, plasma copeptin, the stable C-terminal portion of the precursor of vasopressin, has strong potential as a biomarker for the cardiometabolic syndrome and diabetes. Previous results were contradictory, which may be explained by differences between men and women in responsiveness of the vasopressin system. The aim of this study was to evaluate the usefulness of copeptin for prediction of future type 2 diabetes in men and women separately. METHODS: From the Prevention of Renal and Vascular Endstage Disease (PREVEND) study, 4,063 women and 3,909 men without diabetes at baseline were included. A total of 208 women and 288 men developed diabetes during a median follow-up of 7.7 years. RESULTS: In multivariable-adjusted models, we observed a stronger association of copeptin with risk of future diabetes in women (OR 1.49 [95% CI 1.24, 1.79]) than in men (OR 1.01 [95% CI 0.85, 1.19]) (p (interaction) < 0.01). The addition of copeptin to the Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR) clinical model improved the discriminative value (C-statistic,+0.007, p = 0.02) and reclassification (integrated discrimination improvement [IDI] = 0.004, p < 0.01) in women. However, we observed no improvement in men. The additive value of copeptin in women was maintained when other independent predictors, such as glucose, high sensitivity C-reactive protein (hs-CRP) and 24 h urinary albumin excretion (UAE), were included in the model. CONCLUSIONS/INTERPRETATION: The association of plasma copeptin with the risk of developing diabetes was stronger in women than in men. Plasma copeptin alone, and along with existing biomarkers (glucose, hs-CRP and UAE), significantly improved the risk prediction for diabetes in women

    Serine residue 115 of MAPK-activated protein kinase MK5 is crucial for its PKA-regulated nuclear export and biological function

    Get PDF
    The mitogen-activated protein kinase-activated protein kinase-5 (MK5) resides predominantly in the nucleus of resting cells, but p38MAPK, extracellular signal-regulated kinases-3 and -4 (ERK3 and ERK4), and protein kinase A (PKA) induce nucleocytoplasmic redistribution of MK5. The mechanism by which PKA causes nuclear export remains unsolved. In the study reported here we demonstrated that Ser-115 is an in vitro PKA phosphoacceptor site, and that PKA, but not p38MAPK, ERK3 or ERK4, is unable to redistribute MK5 S115A to the cytoplasm. However, the phosphomimicking MK5 S115D mutant resides in the cytoplasm in untreated cells. While p38MAPK, ERK3 and ERK4 fail to trigger nuclear export of the kinase dead T182A and K51E MK5 mutants, S115D/T182A and K51E/S115D mutants were able to enter the cytoplasm of resting cells. Finally, we demonstrated that mutations in Ser-115 affect the biological properties of MK5. Taken together, our results suggest that Ser-115 plays an essential role in PKA-regulated nuclear export of MK5, and that it also may regulate the biological functions of MK5

    Ileal immune tonus is a prognosis marker of proximal colon cancer in mice and patients

    Get PDF
    Ileal epithelial cell apoptosis and the local microbiota modulate the effects of oxaliplatin against proximal colon cancer by modulating tumor immunosurveillance. Here, we identified an ileal immune profile associated with the prognosis of colon cancer and responses to chemotherapy. The whole immune ileal transcriptome was upregulated in poor-prognosis patients with proximal colon cancer, while the colonic immunity of healthy and neoplastic areas was downregulated (except for the Th17 fingerprint) in such patients. Similar observations were made across experimental models of implanted and spontaneous murine colon cancer, showing a relationship between carcinogenesis and ileal inflammation. Conversely, oxaliplatin-based chemotherapy could restore a favorable, attenuated ileal immune fingerprint in responders. These results suggest that chemotherapy inversely shapes the immune profile of the ileum-tumor axis, influencing clinical outcome

    Intrinsic activity in the fly brain gates visual information during behavioral choices

    Get PDF
    The small insect brain is often described as an input/output system that executes reflex-like behaviors. It can also initiate neural activity and behaviors intrinsically, seen as spontaneous behaviors, different arousal states and sleep. However, less is known about how intrinsic activity in neural circuits affects sensory information processing in the insect brain and variability in behavior. Here, by simultaneously monitoring Drosophila's behavioral choices and brain activity in a flight simulator system, we identify intrinsic activity that is associated with the act of selecting between visual stimuli. We recorded neural output (multiunit action potentials and local field potentials) in the left and right optic lobes of a tethered flying Drosophila, while its attempts to follow visual motion (yaw torque) were measured by a torque meter. We show that when facing competing motion stimuli on its left and right, Drosophila typically generate large torque responses that flip from side to side. The delayed onset (0.1-1 s) and spontaneous switch-like dynamics of these responses, and the fact that the flies sometimes oppose the stimuli by flying straight, make this behavior different from the classic steering reflexes. Drosophila, thus, seem to choose one stimulus at a time and attempt to rotate toward its direction. With this behavior, the neural output of the optic lobes alternates; being augmented on the side chosen for body rotation and suppressed on the opposite side, even though the visual input to the fly eyes stays the same. Thus, the flow of information from the fly eyes is gated intrinsically. Such modulation can be noise-induced or intentional; with one possibility being that the fly brain highlights chosen information while ignoring the irrelevant, similar to what we know to occur in higher animals

    A Modern Mode of Activation for Nucleic Acid Enzymes

    Get PDF
    Through evolution, enzymes have developed subtle modes of activation in order to ensure the sufficiently high substrate specificity required by modern cellular metabolism. One of these modes is the use of a target-dependent module (i.e. a docking domain) such as those found in signalling kinases. Upon the binding of the target to a docking domain, the substrate is positioned within the catalytic site. The prodomain acts as a target-dependent module switching the kinase from an off state to an on state. As compared to the allosteric mode of activation, there is no need for the presence of a third partner. None of the ribozymes discovered to date have such a mode of activation, nor does any other known RNA. Starting from a specific on/off adaptor for the hepatitis delta virus ribozyme, that differs but has a mechanism reminiscent of this signalling kinase, we have adapted this mode of activation, using the techniques of molecular engineering, to both catalytic RNAs and DNAs exhibiting various activities. Specifically, we adapted three cleaving ribozymes (hepatitis delta virus, hammerhead and hairpin ribozymes), a cleaving 10-23 deoxyribozyme, a ligating hairpin ribozyme and an artificially selected capping ribozyme. In each case, there was a significant gain in terms of substrate specificity. Even if this mode of control is unreported for natural catalytic nucleic acids, its use needs not be limited to proteinous enzymes. We suggest that the complexity of the modern cellular metabolism might have been an important selective pressure in this evolutionary process

    Evolutionary History of the Vertebrate Mitogen Activated Protein Kinases Family

    Get PDF
    Background: The mitogen activated protein kinases (MAPK) family pathway is implicated in diverse cellular processes and pathways essential to most organisms. Its evolution is conserved throughout the eukaryotic kingdoms. However, the detailed evolutionary history of the vertebrate MAPK family is largely unclear. Methodology/Principal Findings: The MAPK family members were collected from literatures or by searching the genomes of several vertebrates and invertebrates with the known MAPK sequences as queries. We found that vertebrates had significantly more MAPK family members than invertebrates, and the vertebrate MAPK family originated from 3 progenitors, suggesting that a burst of gene duplication events had occurred after the divergence of vertebrates from invertebrates. Conservation of evolutionary synteny was observed in the vertebrate MAPK subfamilies 4, 6, 7, and 11 to 14. Based on synteny and phylogenetic relationships, MAPK12 appeared to have arisen from a tandem duplication of MAPK11 and the MAPK13-MAPK14 gene unit was from a segmental duplication of the MAPK11-MAPK12 gene unit. Adaptive evolution analyses reveal that purifying selection drove the evolution of MAPK family, implying strong functional constraints of MAPK genes. Intriguingly, however, intron losses were specifically observed in the MAPK4 and MAPK7 genes, but not in their flanking genes, during the evolution from teleosts to amphibians and mammals. The specific occurrence of intron losses in the MAPK4 and MAPK7 subfamilies might be associated with adaptive evolution of the vertebrates by enhancing the gen

    Total economic costs of climate change at different discount rates for market and non-market values

    Get PDF
    What will be the aggregated cost of climate change in achieving the Paris Agreement, including mitigation, adaptation, and residual impacts? Several studies estimated the aggregated cost but did not always consider the critical issues. Some do not address non-market values such as biodiversity and human health, and most do not address differentiating discount rates. In this study, we estimate the aggregated cost of climate change using an integrated assessment model linked with detailed-process-based climate impact models and different discount rates for market and non-market values. The analysis reveals that a climate policy with minimal aggregated cost is sensitive to socioeconomic scenarios and the way discount rates are applied. The results elucidate that a lower discount rate to non-market valueβ€”that is, a higher estimate of future valueβ€”makes the aggregated cost of achieving the Paris Agreement economically reasonable

    Discovery of Porcine microRNAs and Profiling from Skeletal Muscle Tissues during Development

    Get PDF
    MiRNAs (microRNAs) play critical roles in many important biological processes such as growth and development in mammals. In this study, we identified hundreds of porcine miRNA candidates through in silico prediction and analyzed their expression in developing skeletal muscle using microarray. Microarray screening using RNA samples prepared from a 33-day whole embryo and an extra embryo membrane validated 296 of the predicted candidates. Comparative expression profiling across samples of longissimus muscle collected from 33-day and 65-day post-gestation fetuses, as well as adult pigs, identified 140 differentially expressed miRNAs amongst the age groups investigated. The differentially expressed miRNAs showed seven distinctive types of expression patterns, suggesting possible involvement in certain biological processes. Five of the differentially expressed miRNAs were validated using real-time PCR. In silico analysis of the miRNA-mRNA interaction sites suggested that the potential mRNA targets of the differentially expressed miRNAs may play important roles in muscle growth and development
    • …
    corecore