9,114 research outputs found

    Improved calibration of the radii of cool stars based on 3D simulations of convection: implications for the solar model

    Full text link
    Main sequence, solar-like stars (M < 1.5 Msun) have outer convective envelopes that are sufficiently thick to affect significantly their overall structure. The radii of these stars, in particular, are sensitive to the details of inefficient, super-adiabatic convection occurring in their outermost layers. The standard treatment of convection in stellar evolution models, based on the Mixing-Length Theory (MLT), provides only a very approximate description of convection in the super-adiabatic regime. Moreover, it contains a free parameter, alpha_MLT, whose standard calibration is based on the Sun, and is routinely applied to other stars ignoring the differences in their global parameters (e.g., effective temperature, gravity, chemical composition) and previous evolutionary history. In this paper, we present a calibration of alpha_MLT based on three-dimensional radiation-hydrodynamics (3D RHD) simulations of convection. The value of alpha_MLT is adjusted to match the specific entropy in the deep, adiabatic layers of the convective envelope to the corresponding value obtained from the 3D RHD simulations, as a function of the position of the star in the (log g, log T_eff) plane and its chemical composition. We have constructed a model of the present-day Sun using such entropy-based calibration. We find that its past luminosity evolution is not affected by the entropy calibration. The predicted solar radius, however, exceeds that of the standard model during the past several billion years, resulting in a lower surface temperature. This illustrative calculation also demonstrates the viability of the entropy approach for calibrating the radii of other late-type stars.Comment: 16 pages, 14 figures, accepted for publication in the Astrophysical Journa

    Regular quantum graphs

    Full text link
    We introduce the concept of regular quantum graphs and construct connected quantum graphs with discrete symmetries. The method is based on a decomposition of the quantum propagator in terms of permutation matrices which control the way incoming and outgoing channels at vertex scattering processes are connected. Symmetry properties of the quantum graph as well as its spectral statistics depend on the particular choice of permutation matrices, also called connectivity matrices, and can now be easily controlled. The method may find applications in the study of quantum random walks networks and may also prove to be useful in analysing universality in spectral statistics.Comment: 12 pages, 3 figure

    Simulation of the Elastic Properties of Reinforced Kevlar-Graphene Composites

    Full text link
    The compressive strength of unidirectional fiber composites in the form of Kevlar yarn with a thin outer layer of graphene was investigated and modeled. Such fiber structure may be fabricated by using a strong chemical bond between Kevlar yarn and graphene sheets. Chemical functionalization of graphene and Kevlar may achieved by modification of appropriate surface-bound functional (e.g., carboxylic acid) groups on their surfaces. In this report we studied elastic response to unidirectional in-plane applied load with load peaks along the diameter. The 2D linear elasticity model predicts that significant strengthening occurs when graphene outer layer radius is about 4 % of kevlar yarn radius. The polymer chains of Kevlar are linked into locally planar structure by hydrogen bonds across the chains, with transversal strength considerably weaker than longitudinal one. This suggests that introducing outer enveloping layer of graphene, linked to polymer chains by strong chemical bonds may significantly strengthen Kevlar fiber with respect to transversal deformations

    A proposed search for dark-matter axions in the 0.6-16 micro-eV range

    Get PDF
    A proposed experiment is described to search for dark matter axions in the mass range 0.6 to 16 micro-eV. The method is based on the Primakoff conversion of axions into monochromatic microwave photons inside a tunable microwave cavity in a large volume high field magnet, as described by Sikivie. This proposal capitalizes on the availability of two Axicell magnets from the decommissioned Mirror Fusion Test Facility (MFTF-B) fusion machine at LLNL. Assuming a local dark matter density in axions of rho = 0.3 GeV/cu cm, the axion would be found or ruled out at the 97 pct. c.l. in the above mass range in 48 months

    On the edge of a new frontier: Is gerontological social work in the UK ready to meet twenty-first-century challenges?

    Get PDF
    This article is available open access through the publisher’s website. Copyright @ 2013 The Authors.This article explores the readiness of gerontological social work in the UK for meeting the challenges of an ageing society by investigating the focus on work with older people in social work education and the scope of gerontological social work research. The discussion draws on findings from two exploratory studies: a survey of qualifying master's programmes in England and a survey of the content relating to older people over a six-year period in four leading UK social work journals. The evidence from master's programmes suggests widespread neglect of ageing in teaching content and practice learning. Social work journals present a more nuanced picture. Older people emerge within coverage of generic policy issues for adults, such as personalisation and safeguarding, and there is good evidence of the complexity of need in late life. However, there is little attention to effective social work interventions, with an increasingly diverse older population, or to the quality of gerontological social work education. The case is made for infusing content on older people throughout the social work curriculum, for extending practice learning opportunities in social work with older people and for increasing the volume and reporting of gerontological social work research.Brunel Institute for Ageing Studie
    • …
    corecore