15,146 research outputs found

    Noise measurements at Stockton Airport obtained during engineering evaluation of two-segment approaches in a 727-222 aircraft

    Get PDF
    The results of acoustic measurements made on a 727-222 aircraft during standard ILS and two-segment approaches are presented. The aircraft was equipped with a special purpose glide slope computer to provide the capability of making two-segment noise abatement approaches. For upper segment computations, the computer used barometric-corrected pressure altitude and the slant range to a DME transmitter which was colocated with the glide slope transmitter. The computer used the ILS glide slope deviation for lower segment computations. Additional measurements were made on 737 revenue aircraft using the Stockton Airport. The purpose of the acoustical portion of the test was to measure and identify the noise levels during the various approaches

    Identification of Matrices Having a Sparse Representation

    Get PDF
    We consider the problem of recovering a matrix from its action on a known vector in the setting where the matrix can be represented efficiently in a known matrix dictionary. Connections with sparse signal recovery allows for the use of efficient reconstruction techniques such as Basis Pursuit (BP). Of particular interest is the dictionary of time-frequency shift matrices and its role for channel estimation and identification in communications engineering. We present recovery results for BP with the time-frequency shift dictionary and various dictionaries of random matrices

    Noise measurements taken at LAX during operational evaluation of two-segment approaches in a 727-200 aircraft

    Get PDF
    A series of seven noise measurements were made each day over a period of fifteen days. The first and last flights each day were made by a specially instrumented 727-200 aircraft being used to evaluate the operational effectiveness of two-segment noise abatement approaches in scheduled service. Noise measurements were made to determine the noise reduction benefits of the two-segment approaches

    Magnetic Response Versus Lift Height of Thin Ferromagnetic Films

    Get PDF
    The interaction between a magnetic force microscope (MFM) tip and ferromagnetic films of Ni, Co90Fe10 and Py with in-plane magnetization has been investigated. The measured interaction, due to the magnetizing of the films by the MFM tip field, was determined by the phase shift of the cantilever response. The tip-film separation or lift height dependent phase shift was found to be independent of the saturation magnetization of the ferromagnetic film. The result is identical for all three films and micromagnetic simulations give similar results. The reason is at a given tip-sample separation the tip induced magnetization of the film creates a demagnetization field which is equal in magnitude to the tip field at that separation

    Off-diagonal hyperfine interaction between the 6p1/2 and 6p3/2 levels in 133Cs

    Full text link
    The off-diagonal hyperfine interaction between the 6p1/2 and 6p3/2 states in 133Cs is evaluated in third-order MBPT giving 37.3 Hz and 48.3 Hz, respectively, for second-order energies of the 6p3/2 F=3 and F=4 levels. This result is a factor of 10 smaller than one obtained from an uncorrelated first-order Dirac-Hartree-Fock calculation and used in the analysis of a recent high-precision (< 2 kHz) measurement of the 6p3/2 hyperfine structure [Gerginov et al. Phys. Rev. Lett. 91, 72301 (2003)]. The factor of 10 difference has negligible effect on the conclusions of the recent experiment but will become important for experiments carried out at a precision of better than 1 kHz

    Coronal Seismology and the Propagation of Acoustic Waves Along Coronal Loops

    Full text link
    We use a combination of analytical theory, numerical simulation, and data analysis to study the propagation of acoustic waves along coronal loops. We show that the intensity perturbation of a wave depends on a number of factors, including dissipation of the wave energy, pressure and temperature gradients in the loop atmosphere, work action between the wave and a flow, and the sensitivity properties of the observing instrument. In particular, the scale length of the intensity perturbation varies directly with the dissipation scale length (i.e., damping length) and the scale lengths of pressure, temperature, and velocity. We simulate wave propagation in three different equilibrium loop models and find that dissipation and pressure and temperature stratification are the most important effects in the low corona where the waves are most easily detected. Velocity effects are small, and cross-sectional area variations play no direct role for lines-of-sight that are normal to the loop axis. The intensity perturbation scale lengths in our simulations agree very well with the scale lengths we measure in a sample of loops observed by TRACE. The median observed value is 4.35x10^9 cm. In some cases the intensity perturbation increases with height, which is likely an indication of a temperature inversion in the loop (i.e., temperature that decreases with height). Our most important conclusion is that thermal conduction, the primary damping mechanism, is accurately described by classical transport theory. There is no need to invoke anomalous processes to explain the observations.Comment: To appear in the Dec. 1, 2004 issue of the Astrophysical Journa

    Behavior of aircraft antiskid braking systems on dry and wet runway surfaces. A slip-velocity-controlled, pressure-bias-modulated system

    Get PDF
    The braking and cornering response of a slip velocity controlled, pressure bias modulated aircraft antiskid braking system is investigated. The investigation, conducted on dry and wet runway surfaces, utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC 9 series 10 airplane. The landing gear strut was replaced by a dynamometer. The parameters, which were varied, included the carriage speed, tire loading, yaw angle, tire tread condition, brake system operating pressure, and runway wetness conditions. The effects of each of these parameters on the behavior of the skid control system is presented. Comparisons between data obtained with the skid control system and data obtained from single cycle braking tests without antiskid protection are examined
    corecore