5,025 research outputs found

    An efficient BEM for numerical solution of the biharmonic boundary value problem

    Get PDF
    This paper presents an efficient BEM for solving biharmonic equations. All boundary values including geometries are approximated by the universal high order radial basis function networks (RBFNs) rather than the usual low order interpolations. Numerical results show that the proposed BEM is considerably superior to the linear/quadratic-BEM in terms of both accuracy and convergence rate

    Solving high-order partial differential equations with indirect radial basis function networks

    Get PDF
    This paper reports a new numerical method based on radial basis function networks (RBFNs) for solving high-order partial differential equations (PDEs). The variables and their derivatives in the governing equations are represented by integrated RBFNs. The use of integration in constructing neural networks allows the straightforward implementation of multiple boundary conditions and the accurate approximation of high-order derivatives. The proposed RBFN method is verified successfully through the solution of thin-plate bending and viscous flow problems which are governed by biharmonic equations. For thermally driven cavity flows, the solutions are obtained up to a high Rayleigh number

    Comparative studies of some simple viscoelastic theories

    Get PDF
    Comparative studies of some simple viscoelastic theorie

    Inductively coupled plasma mass spectrometer with axial field in a quadrupole reaction cell

    Get PDF
    AbstractA novel reaction cell for ICP-MS with an electric field provided inside the quadrupole along its axis is described. The field is implemented via a DC bias applied to additional auxiliary electrodes inserted between the rods of the quadrupole. The field reduces the settling time of the pressurized quadrupole when its mass bandpass is dynamically tuned. It also improves the transmission of analyte ions. It is shown that for the pressurized cell with the field activated, the recovery time for a change in quadrupole operating parameters is reduced to <4 ms, which allows fast tuning of the mass bandpass in concert with and at the speed of the analyzing quadrupole. When the cell is operated with ammonia, the field reduces ion-ammonia cluster formation, further enhancing the transmission of atomic ions that have a high cluster formation rate. NiĀ·(NH3)n+ cluster formation in a cell operated with a wide bandpass (i.e., Ni+ precursors are stable in the cell) is shown to be dependent on the axial field strength. Clusters at n = 2ā€“4 can be suppressed by 9, 1200, and >610 times, respectively. The use of a retarding axial field for in-situ energy discrimination against cluster and polyatomic ions is shown. When the cell is pressurized with O2 for suppression of 129Xe+, the formation of 127IH2+ by reactions with gas impurities limits the detection of 129I to isotopic abundance of āˆ¼10āˆ’6. In-cell energy discrimination against 127IH2+ utilizing a retarding axial field is shown to reduce the abundance of the background at m/z = 129 to ca. 3 Ɨ 10āˆ’8 of the 127I+ signal. In-cell energy discrimination against 127IH2+ is shown to cause less I+ loss than a post-cell potential energy barrier for the same degree of 127IH2+ suppression

    Random Unitaries Give Quantum Expanders

    Full text link
    We show that randomly choosing the matrices in a completely positive map from the unitary group gives a quantum expander. We consider Hermitian and non-Hermitian cases, and we provide asymptotically tight bounds in the Hermitian case on the typical value of the second largest eigenvalue. The key idea is the use of Schwinger-Dyson equations from lattice gauge theory to efficiently compute averages over the unitary group.Comment: 14 pages, 1 figur

    Stability properties of the collective stationary motion of self-propelling particles with conservative kinematic constraints

    Get PDF
    In our previous papers we proposed a continuum model for the dynamics of the systems of self-propelling particles with conservative kinematic constraints on the velocities. We have determined a class of stationary solutions of this hydrodynamic model and have shown that two types of stationary flow, linear and radially symmetric (vortical) flow, are possible. In this paper we consider the stability properties of these stationary flows. We show, using a linear stability analysis, that the linear solutions are neutrally stable with respect to the imposed velocity and density perturbations. A similar analysis of the stability of the vortical solution is found to be not conclusive.Comment: 13 pages, 3 figure

    In-situ measurements of the optical absorption of dioxythiophene-based conjugated polymers

    Full text link
    Conjugated polymers can be reversibly doped by electrochemical means. This doping introduces new sub-bandgap optical absorption bands in the polymer while decreasing the bandgap absorption. To study this behavior, we have prepared an electrochemical cell allowing measurements of the optical properties of the polymer. The cell consists of a thin polymer film deposited on gold-coated Mylar behind which is another polymer that serves as a counterelectrode. An infrared transparent window protects the upper polymer from ambient air. By adding a gel electrolyte and making electrical connections to the polymer-on-gold films, one may study electrochromism in a wide spectral range. As the cell voltage (the potential difference between the two electrodes) changes, the doping level of the conjugated polymer films is changed reversibly. Our experiments address electrochromism in poly(3,4-ethylene-dioxy-thiophene) (PEDOT) and poly(3,4-dimethyl-propylene-dioxy-thiophene) (PProDOT-Me2_2). This closed electrochemical cell allows the study of the doping induced sub-bandgap features (polaronic and bipolaronic modes) in these easily oxidized and highly redox switchable polymers. We also study the changes in cell spectra as a function of polymer thickness and investigate strategies to obtain cleaner spectra, minimizing the contributions of water and gel electrolyte features

    Tweed in Martensites: A Potential New Spin Glass

    Full text link
    We've been studying the ``tweed'' precursors above the martensitic transition in shape--memory alloys. These characteristic cross--hatched modulations occur for hundreds of degrees above the first--order shape--changing transition. Our two--dimensional model for this transition, in the limit of infinite elastic anisotropy, can be mapped onto a spin--glass Hamiltonian in a random field. We suggest that the tweed precursors are a direct analogy of the spin--glass phase. The tweed is intermediate between the high--temperature cubic phase and the low--temperature martensitic phase in the same way as the spin--glass phase can be intermediate between ferromagnet and antiferromagnet.Comment: 18 pages and four figures (included
    • ā€¦
    corecore