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Synopsis

Some current simple integral.theories of the Lodge type are
compared in simple shearing, small sinusoidal shearing, combined simple
and sinuscidal shearing, cessation and start of simple shearing, finite
amplitude sinusoidal shearing and simple elongational motions. Of these
only the recently proposed network-rupture theory shows a realistic
response in elongational flows; in the other flows it behaves a little
better than other recent integral models in experimental comparisons

with data from polyisobutylene-cetane solutions.
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1. Integral-Type Constitutive Equations

Recently great interest has been shown in integral, as opposed
to differentiall, types of simple rheological constitutive equations.
Certain instability problems and general awkwardne532 in use for some very
simple flows make differential models unattractive to the author and they
will not be discussed further. A survey of some earlier integral type
equations and a discussion of some of their drawbacks has already been
given elsewherea. Here certain recently proposed integral models are
compared for performance in simple flows.

The upsurge in interest in integral models seems to be due in
part to the exposition by Lodgeu, who shows the striking results obtained

from a constitutive relation of the form

T+pl = r N(t - t') s{t') dat’ (1)

= = ) 2
Here T , I and § are the stress, unit and (finite)strain matrices
respectively, p is the pressur~, and N(t - t') is the memory function
reflecting the number of network junctions that were creﬁted in the fluid
at time t' in the past and which still persist at the present time t,
$(t') is the strain of an element at time t' relative to the present time

t as reference; a useful form of §(t') (due to Lodge: see ref, 1. ) is

§ = (1+¢€)B+eC (2)

where € is a number and B and C are the Fingers and Green6 strain
matrices respectively. In a simple shearing flow where the velocity vector
v is given by

v = (yy,0,0) (3)

with y as the shearing rate, it is ecasily shoun" that ¢ governs the

=
=
=
=
=
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ratio ¢f the second to the first normal stress difference. Thus, in simple {

shearing, with v given by equation (2), we have

:!y - 1:zz
€ = =R ; . (4)
XX yy

where t > etc. are the components of T . The main difficulty with
equation (1) is that it predicts a constent viscosity in simple shearing.
We find"

=y J WN(t) dt (s)

t
xy o
Several suggestions have been advanced to overcome this problem. Bogue and
Doughty7 discuss various integral models and Bogue8 suggests a modification
whereby the kernel N(1) becomes a function of the flow history. It is
supposed that the memory function N(t) has a discrete-spectrum form, so that
a
N(t) = J-2 &/ (6)
2
na
n
where the a ~are constants with the dimensions of viscosity and the Xn
are time constants. Bogue8 then suggests that the flow modifies the An
according to the rule

— i}‘* akls) (1)
- |

leff

where xeff is the effective time constant during flow, K(s) is a mean
shear rate over the past history, and a dis a constant. For most simple
flows this yields very complicated expressions; forAsimple shearing one

cbtains the viscosity function ns(y) as

n (y) = J . . (8)

where H(A) is the relaxation spectrum. H(X) is related to N(t) by the
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Laplace transfornm ruleg, i.e.

© =T/
NGr) = I e

da (9)
° 22

Bird and Macdonald10 suggest replacing the kernel of (1) by the form

N(t-t') = (n /] lxn) ) L, b rarr(eeA 2 tenpl(-titA] (20)
n= n=1,2--

where II(t') is the second invariant of the rate of deformation matrix
vy ov.s
D 2 kP s, the A are time constants, n_ is the zero-shear-
2 3xj axi n ()

rate viscosity and ¢ is a constant. The time constants are related to

a master time constant X by the equation

A= a/n” (11)

where a is a constant. The complexity of (10) and (11) is more apparent
than real and the choice of A, is guided by the Rouse11 molecular theory,
vhich holds for sharp molecular weight distributions. For wide distributions
of molecular weight the essential features of (10) could also be retained
with arbitrary time constant distributions of the form (6) but containing

the extra factors depending on II(t'). A result of this theory for simple

shearing may be written

Aylxs r__bg_kﬁ ki)
ol+cAy

which is very similar to eqn. (8). In other flows the Bird-Macdonaldlo
modification is much more tractable than Bogue's8 and the latter does not
secm to have any advantages; hepwe it will not be discussed further,

Kay012 suggests that the kernel N be modified to allow for

variation of the memory function with stress. This leads to an implicit

3
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equation fer the stress components and not surprisingly he confines his

attention to simple shearing. Tanner and Simmons2 introduce the idea of

network rupture at a given critical strain magnitude. When some measure

of §(t') in a linkage exceeds the critical magnitude the network linkage
ruptures and does not contribute further to the stress in the flowing

polymer. Molecular aspects of the rupture hypothesis have been discussed

elsewherels; in the present paper this scheme is compared, where possible,

with the Bird—Macdonaldlo equation and with experiments in steady and

unsteady shearing motions and in steady elongational flow.

2. A Network-Rupture Theory

An explicit form of the network-rupture theory has been given

previously2. Recapitulating, it is supposed that the critical strain

magnitude is reached when

tr g(t') = 32 (13)

where B is a number expected to be13 of order 1-10. Equation (13)

defines a time té vhich gives the age of the oldest surviving junctions
in simple flows (e.g. viscometric and elongational flows). In simple

shearing, two ncighbouring points in the flow move apart monotonically and

eqn. (13) becomes

2 2

2 -
{t ~ té) = B (14)

Y
Thus the age R (=t - té) of the oldest surviving junction is, from (1u),

given by

o= Byl (15)

Henceforward we shall drop the modulus sign from (15) understanding y to be

positive. It is easily shown that the result of the rupture hypothesis is

to replace the infinite limit in equation (1) by t - Tp 3 the results for

([

(=
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the steady-shear viscosity (n (y) ) and the first normal stress difference

txx - tyy then follow readily; the second normal stress difference is then

found from equation (4). The results are

n(y) = g all-(1+ r;l) exp = (1/T )] + n_ (16)
xx " Yy -1, L 2
¥ : E?anln[l Q4T T4 5T ) exp - (/T )] (17)

where Pn = xny/B. The factor n_ in equation (16) is the limiting viscosity
at large shear rate and this is not included in equation (6)2. The value
of ns(Y)/no for these two models is shown in Fig. 1 for a single time
constant, n = 1 , with B BN B, = 0. Curves A and B represent
equations (16) and (12) respectively. The value of ¢ in equation (10)
has been set so that

c = 1.68/B - (18)
then a direct comparison can be made between the curves A and B in fig. 1 since
the curves coincide at n/no = 0.5. Clearly either curve will give satis-
factory results in fitting experimental viscosity curves. For a 5.39%
polyisobutylene-cetane solution* simmoni®»2fRas méasured both the dynamiq
and steady shear viscosities. Figure 2 shows the dynamic viscosity-frequency
curve which has been fifted by the discrete spectrum of Table I. The fit
is clearly sufficiently accurate; probably fewer time constants could be
used. A choice of B = 2,0, 2.4 and 3.5 as in Tabie I fits the shear curve

almost exactly, Fig. 2.

%
Viscosity average M.W. of 1.0 x J.O6 ; the cetane was of 99% minimum

purity. Dr. H. Markovitz of the Mellon Inntitute kindly donated the poly-
isobutylene sample.

=
=
=
=




Fitted Spectrum for 5.39% p.i.b./cetane solution at 25°C
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0.7
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0.004
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3.5
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If the single valuc of B = 2,4 is choscn the result is almost
indistinguishable from the Bird-Macdonald model with ¢ = 0.7, In both
cases the spectrum of Table I has been used. Thus either model is satis-
factory here. Figure 1 also shows the values of (txx - tyy)/2y2nox
for a single time constant. Curve C represents equation (17) and the
Bird-Macdonald model is agaiﬁ represented by Curve B, Figure 3 shows the
computed normal stress curves for the spectrum of Table I, experimental
data obtained in a Couette viscometer, and the normal stress data af
Markovitz and Brown.lu The small differcnce between our 5.4% data and the
daté of Markovitz and Brownlufbr & 5.39% polyisobutylene-cetane solution
of slightly higher viscosity (n° - 18 poise) is noted. It is clear that
equations (17) and the corresponding Bird-Macdonald eXprcésion diverge
equally from the data at higher shear rates. Equation (17) is better at
moderate shear rates; both diverge from the results of Markovitz and Brownlu
at low shear rates. The experimental dynamic elasticity G'(w) and that
calculated from the spectrum is also shown in Fig. 3., It does not apeear

that the experimental data will satisfy the relation

dm fxx Tty _dim |, 6'(w)

Beadu e = 5

5 (19)
Y*0 Y w0 w

predicted by all simple fluid theoricsls; much better agrecment would be

obtained without the “actor 2 in (19). This has been noted previouslyls.
The constancy of € may also be tested. Figure 4 shows experi-

mental results for the two samples of 5.4% polyisobutylene-cetane solution

discussed in Fig. 3. The values of € are much higher than those

observed in some aqueous solutionslv. A meon value of ¢ of around 0.5-0,6

seems to be indicated for higher shear rates. In conclusion, it appears

that cither of the two simple integral models discussed above can represent

T ————"”

i




the basic viscometris functions and the infinitesimal strain results with
reasonable accuracy. Overall the rupture model seenms slightly superior,

We now examine some non-viscometric motions.

3. Combined Sinusoidal and Simple Shearing

The response of a sanple undergoing simple shearing to a super-
posed small sinusoidal shear is of interest, for example, in flow stability
calculations for viscoelastic fluids. Two basic situations are of interest;
either the superposed small shecar is parallel to or transverse to the simple
shearing. We denote these possibilities by subscripts z;and E_rcSpectively.
Because of the linearity of the added infinitesimal motions no léss in
gencrality arises from considering the two cases separately. For finite-
amplitude superposed motions it would not in general be possible to split
the response this way? Inertia forces will be neglected in this and the
following sections, |

For the transverse case, for infinitesimal sinusoidal amplitudes,

we find% for the network rupture theory with a single time constant

n
;E'(T.W) W [1 +{A-lsin A/T + cos A/fbfl/rl (20)
o .

where A = Aw, T = yA/B. For the Bird-Macdonald theory18 we find, with
c = 1.68/B ,

n
;} = [(1+ A%)(1 + 2.82r%)77t (21)
(o]

For T =0, 1/2, 1, 2 thesec results are compared in Fig. 5. Similar curves

for I' = 0, 1 are shoun in Fig. & for the dynamic elasticity, G{(Y,m). The

: 2,18
relevant expressions ere o

P

",

=
%
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]
th 2,11,2 2 -1/r
- = [+ A% [A + (cosA/T - AsinA/T-A%-1) e ] (22)
[+]
G -
—:— = 2%t + A% + 2.82r9H)772 (23)
o]

Experimental results obtained by Simmons19 for the 5.u4% p.i.b.
cetane solution discussed previously are shown in Figs. 7 and 8. Although
one might consider from figs. 5 and 6 that the models differ greatly in
such a flcw it turns out that they are quite similar. Comparisomswith
experiments19 are shown in Figs. 7 and 8. In both cases the values of
Table I and ¢ = 0.7 have been used in the calculations. The network-
rupture model appears to be slightly better in viscosity predictions; at
low frequencies the Bird-Macdonald model predicts G{(Y,m) better in most
cases; at high frequencies the rupture theory is considerably superior.

It is obvious thaf another anomaly is present here. For all
isotropic fluids we expect
lin n(y,0) = n(y) (24)

w0
This condition is not fulfilled as is clear from Fig. 7. It is believed
that the experiments are sufficiently accuratelg’20 (maximum of about 5%
error) and it appears that the cause of the discrepancy must lie in our
inability to reach a sufficiently low freduency for eqn. (24) to hold rigo-
rously. However, the persistent disagrecement down to frequencies much below
the pr;ncipal relaxation times is to be noted. Fupther exploration of this

2,19 that all concentrations

point is being made; at the moment we note
of polyisobutylene-cetane samples gave a similar effect; for a 1.5% carbo-

xymethylcellulose-distilled water sample (fig. 9 and 10) the effect is less

A AL

il




pronounced but still visible.

The parallel case is a little more complex and there is more
direct interaction between the sinusoidal motion and the main shearing.
Some, but not all, of this interaction can be illustrated by considering

a completely inelastic fluid with a variable viscosity. Suppose
T = 2Dn(2trd?) (25)

In parallel superposition the interesting component of T is txy' For D
we have d_ = : 8, thus 2trD2 = 35»2 . If the velocity component
xy 2 9y ° oy

u is of the form
u = yy + awysinot
where & is the maximum (small) sinusoidal strain, we find

" 2 an 2 . 2
t. =t° + &t' = ya(y") + |y— + n(y?)] &usinwt + 0(&°) (26)
we = Sy gy = 1ALy [ 5], T "0
Thus the "mean viscosity", t;yly is altered cnly to order(Xéz), while

the effective dynamic viscosity n;(E t;y/w) becomes

an
\J = gL
“p n+ Tiny + 0(8) (27)

The error term is thus proportional to the sinusoidal amplitude. In contrast,

2 22

for the transverse case we find 2trD® = 72 + 8w sin2wt and

) _ 2 2
t;y/Y = nly?) + 0(&%)
(28)
n' o= nGy?d) + o¢ad)

Thus one may expect that amplitude e¢ifects will cause least disturbance to

the measurements in the transverse configuration,

s

3
3
3
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In Figs. 7-10 the value of & was between 0.04 and 0.08 and no significant
amplitude effects were notcd!‘g

Several reports of parallel superposition have appeared recently

10,24

and analyses of this casc have been given . Here:the response

o ol

21-23

for a single relaxation time with the rupture model is given. This illustrates

some ‘of the points made above.

From ref. 4 we find the Sxy component of § to be

= - 1t s = 3 1
Sxy y(t - t') + &(sinwt - sinwt')

tr B 2t - 12 + 2ay(t - t')(sinwt - sinut')+0(a>)

'
"
x
<
"
-

Setting tr B = B2 we find the rupture time R is given by

1. = g-- {%inwt - sinw(t - %i} + 0(32)

R

=< |

Hence, substituting in equation (1) we find

to ‘
2% = 1~ (1+BAY) exp (-BAY) + 0(a%) (29)
"
and
: Bn '
G;(m,y) s G{(w,y) - ——%—(l - coswB/y) exp(-B/Ay) + 0(&) (30)
Bn

6"(w,y) = wn'(w,y) = G"(w,y)- —= sinwB/y exp(-B/Ay)+0(a) (31)
P P t Y12

In both (30) and (31) the expressions may become negative; this also occurs
in the Bird-Macdonald modcllo. Figure 11 shows values of IGQIA/"o 3 for
Aw < 1, l.h,Gé is negative for the rupture model and the BEird-Macdonald

model respectively. . This extraordinary behaviour is masked with many time
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constants and has not been observed to the author's knowledge. The experi-

ments of Osaki et al?l’?2 unfortunately do not cover wide enough ranges of

variables accurately to inspect the type of result given by equation (2u).

In the experiments of 3001523 the values of dynamic viscosity np(f,w) are
considerably below the value of "s(Y) for the lovest frequencies; this is =
predicted by equation (31). In summary, we note that the superposition of
small-amplitude and simple shearing gives some interesting results and that
the transverse configuration is the least complex. In addition, it is clear
that both integral theories give reasonzble predictions here; perhaps the
network rupture theory is a little better overall., The striking reduction
in fluid elasticity due to shearing is obvious; in references 2, 13 and 22

the changes of the relaxation spectra H(A) due to shearing are discussed.

4, Finite Amplitude Unsteady Shearing Motions

In this section we investigate inertialess shearing motions in
which the velocity field is of the form (3) but where the shear rate is a 2
function of time. It must be said that the dismissal of inertia in such .
flows may often be unrealistic and care may be necessary in experimental

comparisons.

1

A popular test 6 has been the study of the decay of shearing 1,

stressee after suddenly stopping a steady shear flow. In this case we find
that the rupture and Bird-Macdonald models give practically identical results.
It is easily shown that for discrete relaxation times they both give the

result
t
XY . ~t/A
Y g a e n f(Any) (32)

vhere f(kny) gives the steady-shear viscosity ratio ns/n° for a single
relaxation time A (eqn. (16) for the rupture model). Except with the
single relaxation time, the normal stress differences relax more slowly than

the shear stress. Despite its popularity
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we sec that the stop-shear test is useless for distinguishing between reasonable
non-linear theories. The start-shear test is much more informative and this is
now discussed.

In the start-shear problem it is cleav-that no linkages can rupture
before the fluid has been strained a certain amount. When shearing does

commence, we have

S = y(t-1t'), t' >0
= t>0 (33)
= yt 0 > t!
For t<0,8=0. Hence (1) becomes"
A 0
t,., = J N y(t - t')dt' + yt J N(t - t') at' (34)
Xy 0 t-1
R
To find TR we calculate tr B , which is then equated to B2 . Hence, using

the expression for negative t' in (33), we find

yt = B © (35)
and thus no rupture occurs before a time B/y has elapsed after starting; in
this region R is infinite and Lodge's resultu is recovered. Immediately
after this time (t = B/y) all the surviving old linkages rupture and a state of
steady shearing is instantly reached. This occurs because the memory time now
goes back a distance B/y ; for t > é/y the secend integral in (34) vanishes
while the first integral yields the result (16). Evaluating the integrals (34)

we find, in terms of the "transient" viscosity txyly,

t nz(t,y) -t/A
XY w22 B e 2 for 2>t
el - ngleny) T Ty UT

1l for t > B/y

(36)

This expression jis for a single relaxation time A. It is easily shown that

the Bird-Macdonald model gives the corresponding result
ng(t,y)
ns(y)

Choosing ¢ = 1.68/B we compare these expressions in Fig. 12. The rupture model

=) -t .

(1 - e %) (37)

shows a much quicker return after overshoot and this seems to be




characteristic of cxperimentszs. Unfortunately it is not possible to
compare with the data of reference 25 because the dynamic measurements
are not given. One expects that this test will provide a means for
estimating the distribution of rupture strains by looking at the peak
shape; certainly one expects rounder peaks than those predicted for a
constant rupture strain. It is e&%&%éed that this type of experiment will
be quite useful in distinguishing between theories.

As a final example of this type of motion we consider a sinu-
soidal shearing motion of finite amplitﬁde, again neglecting inertia.
Philippoff26 has reported some experiments on this type of motion in which

inertia may have played a negligible role. Suppose that the variable

shear is sinusoidal, i.e.

Yy = -8wsinut (38)

Then we find that Sxy has the value

Sxy(t') 5 &{coswt - coswt'} ' (39)

and tr B is S:y . Hence rupture occurs when sxy = B. From equation

(39) and Fig. 13a we see that no rupture ever occurs if B > 28 . In this

case the problem is lincar and the value of txy is given, for n discrete

relaxation times, by

Ancose

t . A
S PN s R R 9 (40)
aw L™ Az a sl <

where 6 = wt, An = wxn . For B> a > B/2 we have rupture occurring as
shown in the shaded parts of fig. 13b. The unshaded areas continue to
contribute to the stresses in the medium and their total effect is expressed

as a series which can be summed readily. The final expression for txy/aw

L e e
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is given by

a exp-(n/2+0)/A

t
. S
T cosb Z

sinhg/A_+H(0-1+E) sinh -— [e“/An = 1]
n A
n An sinh 'n/2An n

®n %n'n
- sinb z 5 + cosb z--; -
n 1+An n 1+A;

a exp - ('n/2+0)/l\n Ans1n£ cosh £/An 4+ cosf sinh f,/An

-

2
n An(l+An) cosh 'n/2An

- H(e-n+£)(e"/A"+l) sinh Zg-cosa
n

+A coshll-sina
n An

(1)

where H(x) is the Heaviside function, equal to unity for x > 0 , zero for

0>X,

cost = g-— 1 (42)
B
cosa = x ¢ cosH (u3)

In equations(41)-(43) « >6 >0, and B > & > g-. The function (u41)

is such that
txy (6 + 1) = - txy(e) (uu)

For larger values of & the expressions are simplified. From Fig. 13c we

see that all junctions except those formed less than a half-cycle ago have

been destroyed in this case.® Thus for 0 <¢ < £,

=
=
—
=
=
=
=

=
==
=
=
=
=
=
=
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=
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t
X n s€
;-% = cosOZ K— 1l - exp - (e+£)/A X _n.ﬁ. SEL__+ sino
n 1+A
At (45)
exp -(0+§ /A
+ E a 5 {Co%ﬁ - sin;]
1+A
n
For §£ 26 < § , where
cosé = 1 - 2B/A (46)
we have
Ty by
o = Expression (45) - e . (47)
where
t(l)
AL S N y "%
" 2cos® i exp O/A sinh [A J
n n n
a_ exp - 8/A cosa
-2 z . 2" sinh {-J
n An(l +A)
: a exp - 8/A
-2 Z -2—"____7T‘11 sina cosh[ﬁii :
n 1+ A n (48)
while for # > 8 > § we have
tx
7:% = cosb Z — (1 - exp - (& - 6)/A )
n n
n [coso ]
=L -5 |—5— + sind
n l+A2 An

a_ exp-(06-6)/A . :
+ ] > > [‘:* " sinG} (49)
n n

=
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Some of these expressions are portrayed in figs., 15 and 16 for the fluids
shown in fig. l4. In both cases T, * 1 poise and there is a single
time constant. For fluid A n, = 0.6 poise and for fluid B n, = 0.

In both cases we choose &8 =4 , B=2, A=1. fig. 15 shows the
response for fluid A and for the same fluid with B > 8 (linear visco-
elasticity). The flattening of the curve in the region of maximum speed
and the reduced elasticity as evinced by the very much reduced phase
shift (measured by the curve intercepts on the 0-axis) show clearly.

The third harmonic appears to be about 6% of the fundamental.Philippoff?6
experimenting with a fluid having properties similar toA, gives the same
general predictions and the same size of third harmonic (< 10%). Fluid

B shows a more dramatic change from the linear case, fig. 16. The third
harmonic is about 30% greater than the first in this case and again the
phase shift is reduced. A curve is drawn on fig. 16 indicating a linear

response cut dowvn by assuming R, to be that corresponding to the mean

shear rate Ym » where

Y, * 28w /v 7 ' (50)

This fails to predict phase, amplitude or harmonic content changes.
The rupture theory has not been compared with the Bird-Macdonald®

model here. The latter gives rise to integrals not expressible in terins of

tabulated functions.

5. Elongational Flows

We have seecn that the two simple integral models discussed above
behave similarly in shearing flows. Although a great many laminar flows
of interest belong to this category it is desirable to test any new consti-

tutive approximations in other types of flow. Recently the simple

1 o

=

=
=
=
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4,3

- 3 L
extensional flows have become of some interest * and here we consider

two-dimensional (sheet) and three-dimensional (rod) extensions.

For the sheet case (pure shear) the velocity field is of the

form

.V_ = (GX. "Gy‘ 0)

and the rate of deformation matrix has diagonal elements G, -G, 0

(51)

respectively. From reference 4 we find the strain field B(t') also has

a diagonal form with non-zero elements as follows

i eQG(t-t') -
xX
B = o-26(t-t') _
yy

S
|

by assuming t._ = 0 (ambient pressure) we find

C ting t -t
OMPULINE  Tyxtyy vy

t -
t = I 28 (t-t') sinh 26 (t-t') dt'

-t
XX yy _
t TR

and also

tr g(t') = 2[cosh 26 (t-t') - 1] = 82

Equation (54) defines the rupture time TR as
1 2

_ -1 B~
R ° % cosh = (1 + 5 )

Integrating, we find, for n discretec relaxation times,

c ot s § a | exp 1R(2G-14n) -1 \ exp-1R(23+1<5? e 1
x - yy C LX) 26X - 1 268 + 1
n n A

(52)

(53)

(s4)

(s5)

(56)

The corresponding result for the Bird-Macdonald model is, for 1 > 2Glrl 5

n Han
t,, -t =
XX yy 2.2 2508 _pndsd
An(1+?c AnG Y(1-4G An)

(57)

T —
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For 2GAn > 1 the integrals leading to (5%) diverge and no solution is

at hand. The results (56) and (57) are compared in Fig. 17 for B = 3,

¢ = 1.68/B ; here

", = (Gurty)e (58)

The results for a three-dimensional (rod) elongation have been given

previouslyz. Fig. 18 shows the results for a single time constant with

various values of breaking strain B . The quantity B is related to B

(in pure shear) by the equation
2

N e B, .
B = E-cosh (1 + 5*0. S fRG (59)

with a sirilar result for simple extensionz. With these results it is
possible to make an attempt at explaining the results of Ballman - using
the rupture theory. Since no dynamic mcasurements are available only two
time constants have bcen used. Ve take Al = 200 sec , A2 = 20 sec , with
a = 467 lbf.s/in%.a2 = 200 lbf.s/in? These values correspond to the extra-
polated (dashed) curves in fig. 19, which are not impossible. With

B=2.5 (B=12.2) we find a hump in the elongational viscosity of the
right order of magnitude. Further terms in the kernel would improve the
shape of the hump if required. It is discussed elsewhere13 that solid

materials will be expected to have larger values of B than solutions.

Accepting this, then the mystery of high, but not infinite, elongational

viscosities disappears.

Discussion
This paper has attempted a comparative study of the network

rupture thecory and other simple integral theories. Both of the principal

theories considered need only the following tests for estimation of the

=
=

A
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parametcrs involved:

(a) The dynamic viscosity. This fixes the form of N(1) and
allows the an s An to be chosen.

(b) The shear-stress-shear-rate curve. Using this data with
test (a) one can find the rupture strain magnitude (B). In the Bird-

Macdonald theorylo

¢ may be found in a similar way.

(c) The second normal stress difference allows € to be
estimated.

Providing one is willing to accept the type of spectrum.used
by Spriggs et al‘ one could sa& that both theories require five constants.
This aspect has not been emphasized here. The first normal stress differ-
ence and the rest of the uniform stress tests given above are predicted
with no further parameter adjustment. If one was willing to pick the best
overall value of B (or c) to fit both viscosity and normal stress data
quite close agreement with these tests could be obtained. Then, however,
one cannot strictly say that the first normal stress is predicted.
Doughtyy and Bogue27 have effectively tried this approach; some of their

28 model are identical to the Bird-Macdonald model

results for the BKZ
(eqn. 12) while Bogue's own model8 yields the type of result given in
equation (8). According to this Qork27, the Bogue and BKZ models are more
accurate than Pao's29 model or a differential model of the Oldroyd typeao.

In the present writer's opinion the Bogue and BKZ models are not superior

in convenience, accuracy or physical insight to the Bird-Macdonaldlo model in
simple shearing. For more complex flows they are decidedly more inconvenient.
Furthermore, all of these theories predict infinite stresses in pure shearing
at a finite shearing rate. The present author considers that this is an un-

realistic prediction, but this is not a universally held opinion3l’32.

il
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Evidence supporting this idea occurs in the data of Ballman33 and Nitsch-
mannaq whose data show that some of fhe relaxation times are greater than
/2 6 . Astarita32 has stated that "fluids for which the rate of stress
relaxation is essentially exponential may flow at any value of A/TT;
without developing infinite stresses, but cannot flow at values of
AJTT::Ti; exceeding some critical upper limit of the order of unity" .
Here IIm is the second invariant of the vorticity tensor. Referring to
equations (32) and fig. 18 we immediately see that Astarita's>? conclusion
is false. Our rupture theory relaxes exponentially and does not have a
maximum shear rate. The network theory of Yamamoto35 also shows no
maximum shear rate. One suspects that a proper three-dimensional formula-
tion of the work of Graessley36 would show a maximum shear rate effect.
Thus it is conciuded that network rupture, vhich is a natural physical
effect, is effective in suppressing these unrealistic infinite stresses

at finite clon_ation rates.

It would also be possible to use something like the rate
factor [1 + 2c2)t211(1:')]'1 to represent the effect of shearing on junction
formation while retaining the network rupture for terminating old junctions.
Such a composite theory seems to be physically reasonable and would allow
a better fit (not prediction) of the first normal stress difference at higher
shear rates. In many cases the extra complexity would not be warranted,
one suspects, and the simple rupture theory will be adequate.

The deficiencies of the present model appear to be associated
with most simple isotropic fluids and it is hard to see how much improve-
ment in fitting the combined shear test (fig. 7) for example, can be made
without tremendous corputational disabilitieslg. Probably the best

approach now lies in the study of the molecular constitution rather than in

o

o

il

il
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pure continuum mechanics. Obviously details of the network formation and
rupture should be considered and some improvements can certainly be made
in this direction. Scope also clearly exists for further critical experi-
mental work in testing the various theories on diffefent fluids and
developing computational methods for more complex flows. The guthor is
not.convinced that a perfect fit to all existing data will ever be made
with simple integr:l models of the type considered here. However, it

iu encouraging that opinion is now converging on this type of theory as
representing the best type of simple constitutive equation for polymer

fluids.
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