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Synopsis

Some current simple integral theories of the Lodge type are

compared in simple shearing, small sinusoidal shearing, combined simple

and sinusoidal shearing, cessation and start of simple shearing, finite

amplitude sinusoidal. shearing and simple elongational motions. Of these

only the recently proposed network-rupture theory shoos a realistic

response in elongational flows; in the other flows it behaves a little

better than other recent integral models in experimental comparisons

with data from polyisobutylene--cetane solutions.
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1. Integral:jyne Constitutive Equations

Recently great interest has been shown in integral, as opposed

to differential 1 , types of simple rheological constitutive equations.

Certain instability problems and general awkwardness  in use for some very

simple flows make differential models unattractive to the author and they

will not be discussed further. A survey of some earlier integral type

equations and a discussion of some of their drawbacks has already been

given elsewhere 3 . Here certain recently proposed integral models are

compared for performance in simple flows.

The upsurge in interest in integral models seems to be due in

part to the exposition by Lodge i} , who shows the striking results obtained

from a constitutive relation of the form

t
T + pI =	 N(t - t') SW) dt'	 (1)

Here	 T , I and S are the stress, unit and (finite)strain matrices

respect-S vely, p is the pressure, and N(t - t') is the memory function

reflecting the number of network junctions that were created in the fluid

at time t' in the past and which still persist at the present time t.

S(t') is the strain of an element at time t' relative to the present time

t as reference; a useful form of S(t'; (due to Lodge; see ref. 1. ) is

S = (1 + E) B + EC	 (2)

where E is a number and B and C arc the Finger s and Green  strain

matrices respectively. In a simple shearing flow where the velocity vector

v is given by

v = (1y,0,0)	 (3)

with y as the shearing rate, it is easily shown4 that c governs the
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ratio of the second to the first normal stress difference. Thus, in simple

shearing, with v given by equation (2), we have

t - t

E = 
J	 Z2	 (4)
t	 t
XX	 yy

where tXx , etc. are the components of T . The main difficulty with

equation (1) is that it predicts a const..nt viscosity in simple shearing.

We find 4

tXY = Y ^TN(T) dT	 (5)
J0

Several suggestions have been advanced to overcome this problem. Bogue and

Doughty ? discuss various integral models and Bogue 8 suggests a modification

whereby the kernel N(i) becomes a function of the flow history. It is

supposed that the memory function N(T) has a discrete-spectrum form, so that

N(T) = E 

a2	
na-T/a	 (6)

n A
n

where the an are constants with the dimensions of viscosity and the An

are time constants. Bogue 8 then suggests that the flow modifies the X 

according to he rule

_l	
1 + aK(s)	 (7) _

Jeff - ^n

where 
aeff 

is the effective time constant during flow, K(s) is a mean

shear rate over the past history, and a is a constant. For most simple

flows this yields very complicated expressions; for simple shearing one

obtains the viscosity function ns (y) as

ns(Y)	
Hda	 (8)

fo l+al Yl x

where 110) is the relaxation spectrum. H(X) is related to N(T) by the



-3-

Laplace transform rule 9 , i.e.

cc

	

/^

	

N(t) = 
J 

H(^) erT 	
da	 (9)

o	 a2

Bird and Macdonald 
10 

suggest replacing the kernel of (1) by the form

^D	 OD

N(t-t') (no an)	 Ail [1+2II(t t )c2X 2 ) -lexp[( - ti_t') /and	 (10)
n=1	 n=1,2--

where II(t') is the second invariant of the rate of deformation matrix

	

(

_1 avi 	avi J
D 

` 2 (ax• + 
X) ,the In are time constants, no is the zero-shear-

	

7	 1

rate viscosity and c is a constant. The time constants are related to

a master time constant 1 by the equation

	

In = ),/na
	(11)

where a is a constant. The complexity of (10) and (11) is more apparent

than real and the choice of a n is guided by the Rouse 
11 

molecular theory,

which holds for sharp molecular weight distributions. For wide distributions

of molecular weight the essential features of (10) could also be retained

with arbitrary time constant distributions of the form (6) but containing

the extra factors depending on II(t'). A result of this theory for Simple

shearing may be written

ns(Y) = 
J'h 2 X 2 2	

(12)

o 1+ c a Y

which is very similar to eqn. (8). In other flows the Bird-Macdonald 10

modification is much more tractable than Bogue's 8 and the latter does not

seem to have any advantages; herr•e it will not be discussed further.

Kaye 
12 

suggests that the kernel N be modified to allow for

variation of the memory function with stress. This leads to an implicit
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equation for the stress components and not surprisingly he confines his

attention to simple shearing. Tanner and Simmons 2 introduce the idea of

network rupture at a given critical strain magnitude. 4dhen some measure

of S(t') in a linkage exceeds the critical magnitude th:: network linkage

ruptures and does not contribute further to the stress in the flowing

polymer. Molecular aspects of the rupture hypothesis have been discussed

elsewhere 13 ; in the present paper, this scheme is compared, where possible,

with the Bird-Macdonald 
10 

equation and with experiments in steady and

unsteady shearing motions and in steady elongational flow.

2. A Network-Rupture Theorl

An explicit form of the network-rupture theory has been given

previously2 . Recapitulating, it is supposed that the critical strain

magnitude is reached when

tr B(t') = B2	(13)

where B is a number expected to be 13 of order 1-10. Equation (13)

defines a time t' which gives the age of the oldest surviving junctions

in simple flows (e.g. viscometric and elongational flows). In simple

shearing, two neighbouring points in the flow move apart monotonically and

eqn. (13) becomes

Y2(t - t 
I ) 
2 = B2	(14)

Thus the age T  (= t - t.) of the oldest surviving junction is, from (14),

given by

T 
	 = B /IYI
	

(15)

Henceforward we shall drop the modulus sign from (15) understanding y to be

positive. It is easily shown that the result of the rupture hypothesis is

to replace the infinite limit in equation (1) by t - T  ; the results for
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the steady-shear viscosity ( ns (Y) ) and the first normal stress difference

txx - tyy then follow readily; the second normal stress difference is then

found from equation (4). The results are

ns(Y) _ I an[1 - (1 t rn l ) exp - ( 1/rn )7 + n.	 (16)
n

txx2 
YY _ 12anan[1 - (1 + rn l + 2 rn 2 )e xp - ( 1/rn )7 (17)

Y	 n

where r
n	 n
= a y/B. The factor n. in equation (16) is the limiting viscosity

2
at large shear rate and this is not included in equation (6) ` . The value

of ns(Y)/no for these two models is shown in Fig. 1 for a single time

constant, n = 1 , with a n = no , % = 0. Curves A and B represent

equations (16) and (12) respectively. The value of c in equation (10)

has been set so that

C = 1.68/B	 (18)

then a direct comparison can be made between the curves A and B in fig. 1 since

the curves coincide at n/no = 0.5. Clearly either curve will give satis-

factory results in fitting experimental viscosity curves. For a 5.395

polyisobutylene-cetane solution Simmons19,22as measured both the dynamic

and steady shear viscosities. Figure 2 shows the dynamic viscosity-frequency

curve which has been fitted by the discrete spectrum of Table I. The fit

is clearly sufficiently accurate; probably fewer time constants could be

used. A choice of B = 2.0, 2.4 and 3.5 as in Table I fits the shear curve

almost exactly, Fie. 2.

Viscosity average t1.1l, of 1.0 x 10 6 ; the cetane was of 99% minimum
purity. Dr. H. Piarkovitz of the Mellon In^titute kindly donated the poly-
isobutylene sample.



TABLE I

Pitted Spectrum fo- , 5.39% p.i.b./cetane solution at 25°C

n an (sec.) an (poise) B

1 0.7 0.01 2.0

2 0.3 0.7 2.0

3 0.14 1.15 2.0

4 0.08 2.7 2.0

5 0.04 i.6 2.4

6 0.018 1.5 2.4

7 0.01 1.0 2.4

8 0.007 0.9 2. It

9 0.004 0.8 3.5

10• 0.002 0.8 3.5

11 0.0015 0.5 3.5

12 0.0008 0.5 3.5

np = 0.3 poise.
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If the single value of A = 2.4 is chosen the result is almost

indistinguishable from the Bird-t•facdonald model with c = 0.7. In both

cases the spectrum of Table I has been ised. Thus either model is satis-

factory here. Fii;ur4 1 also shows the values of ( txx - tyyWy2n0X

for a single time constant. Curve C represents equation (17) and the

Bird-N,acdonald model is again represented by Curve $. Figure 3 shows the

computed normal stress curves for the spectrum of Table I, experimental

data obtained in a Couette viscometer, and the normal stress data of

Markovitz and Brown. 
14 

The small difference between our 5.4% data and the

data of Markovitz and Brown 14fore 5.39% polyisobutylene-cetane solution

of slightly higher viscosity (no . 16 poise) is noted. It is clear that

equations (17) and the corresponding Bird-Macdonald expression diverge

equally from the data at higher shear rates. Equation (17) is better at

moderate shear rates; both diverge from the results of Markovitz and Brown 14

at low shear rates. The experimental dynamic elasticity G'(w) and that

calculated from the spectrum is also shown in Fib;. 3. It does not apeear

that the experimental data will satisfy the relation

lim txx - 	 li	 G I Merr =	 m	 2	 (19)
y4o I---- Y2	 Wa0 

I	 W2

predicted by all simple fluid theories 15 ; much better agreement would be

obtained without the "actor 2 in (19). This has been noted previously 16.

The constancy of a may also be tested. Figure 1 1 shows erperi-

mental results, for the two samples of 5.41 polyisobutylene-cetane solution

discussed in Fig. 3. The values of E are much higher than those

observed in some P.queous solutions 17 . A mean value of c of around 0.5-0.6

seems to he indicated for hither shear rates. In conclusion, it appears

that either of the two simple integral models discussed above can represent
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the basic viscometri r^ functions and the infinitesimal strain results with

reason-,ble accuracy. Overall the rupture model seems slightly superior.

We now examine some non-vi.scometric motions.

ti

3. Combined Sinusoidal and Simp le She aring

The response of a saaple undergoing simple shearing to a super-

posed small sinusoidal shear is of interest, for example, in flow stability

calculations for viscoelastie fluida. Two basic situations are of interest;

either the superposed small shear is nrallel to or transverse to the simple

shearing. We denote these possibilities by subscripts p and t respectively.

Because of the linearity of the added infinitesimal motions no loss in

generality arises from considering the two cases separately. For finite-

amplitude superposed motions it would not in general be possible to split

the response this way • Inertia forces will be neglected in this and the

following sections.

For the transverse case, for infinitesimal sinusoidal amplitudes,

we find? for the network rupture theory with a single time constant

t (Y,w) = (1 t A? ) -1 [1 +(A-lsin A/r + cos A/13e 1/r] 	 (20)
n
o

where A = Aw, r = yx/B. For the Bird-Macdonald theory 18 we find, with

c = 1.68/B ,

n^ = [(1 t A 2 )(1 + 2.82 16'	 (21)
0

For r = 0, 1/2, 1, 2 these results are compared in Fig. S. Similar curves

for. r - 0, 1 are shown in fig. 6 fo: tha dynamic elasticity, Gt(y,w). The

relevant expressions are 2,16
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I	

r	 l
GtX - [1 t A2 1

-1 `A 2 
t (cosw - AsinA/r-A2-1) e- 

1/

	
(22)

o	 ll

Gta 
= A2[(1 t A2 )(1 + 2.82r 2 )]

-1
	(23)

T1

Experimental results obtained by Simmons 
19 

for the 5.4, p.i.b.

cetane solution discussed previously are shown in Figs. 7 and 8. Although

one might consider from figs. 5 and 6 that the models differ greatly in

such a flc:: it turns out that they are quite similar. Comparisoir. with

experiments 19 are shown in Figs. 7 and 8. In both cases the values of

Table I and c = 0.7 have been used in the calculations. The network-

rupture model appears to be slightly better in viscosity predictions; at

low frequencies the Bird-Macdonald model predicts Gt(Y,w) better in most

cases; at high frequcncies the rupture theory is considerably superior.

It is obvious that another anomaly is present here. For all

isotropic fluids we expect

lim nt (Y,w) = ns(Y)
w+0

This condition is not fulfille6 as is clear from Fig. 7. It is believed

that the experiments are sufficiently	
9

ntly accurate 
19,20 

(maximumof about 5%

error) and it appears that the cause of the discrepancy must lie in our

inability to reach a sufficiently low frequency for eqn. (24) to hold rigo-

rously. However, the per:.istent disagreem.ent down to frequencies much below

the principal relaxation times is to be noted. Further exploration of this

point is being made; at the moment we note 
2,19 

that all concentrations

of polyisobutylene-cetane samples gave a similar effect; for a 1.5 10 carbo-

xymethylcell.ulose-distil)cd grater sample (fig. 9 and 10) the effect is less

(24)
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pronounced but still visible.

The parallel case is a little mo_e complex and there is more

direct interaction between the sinusoidal motion and the main shearing.

Some, but not all, of this interaction can be illustrated by considering

a completely inelastic fluid with a variable viscosity. Suppose

T = 2Dn(2trD2 )	 (25)

In parallel superposition the interesting component of T is t x}, . For D

2
we have d

xy = 2 ay 	
thus 2trD2 = YJ
	

If the velocity component

u is of the form	 J

u = Yy + 5wysinwt

where 5 is the maximum (small) sinusoidal strain, we find

txy = to + At' = Yn(Y 2 ) + 
[,L
	 + n W ) 5wsinwt + 0(52 ) (26)

a a=o

Thus the "mean viscosity", t o /Y is altered only to order 0(a2), while
XY

the effective dynamic viscosity n'(= t'xy /w) becomes
p 

np	 n + ainy + 0(5)
	 (27)	

^^

The error term is thus proportional to the sinusoidal amplitude. In contrast,

for the transverse case we find 2trD 2 = Y2 + A2w2 sin 2wt and

to/Y = n(Y 2 ) + 0(22)
xy

(28)

n' = n(Y 2 ) + 0(52)

Thus one may expect that ampli.tud '! effect s will cause lea st disturbance to

the measurements in the transverse configuration.

MW
_	 -	 _
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In Figs. 7-10 the value of a was between 0.0 1E and 0.08 and no significant

amplitude effects were noted19

Several reports of parallel superposition have appeared recently 21-23

10,211  
and analyses of this case have been given. Here . the response

for a single relaxation time with the rupture model is given. This illustrates

some , of Vie points made above.

From ref. 4 we find the Sxy component of S to be

S
xy 

= Y(t - t') + a(sinwt - sinwt')

tr B = B 2	= Y 2 (t -- t') 2 + 2ay(t - t')(sinwt - sinwt')+0(a2)
Xy

Setting tr B = B 2 we find the rupture time tR is given by

I  = B - Y ISs inwt - sinw(t - B)}+ 	 0(a2)

Hence, substituting in equation (1) we find

to

	

xy = 1 - (1 + B/Xy) exp (-B/ay) + 0(a2 )	 (29)
Yno

and
Bn

Gp( w ,Y) = Gt( w ,Y) -	 2 (1. - coswB/Y) exp(-B/XY) + 0(a) (30)

Ya

Bn
GP(w,Y) = wn'(w,Y) = Gt(w,Y)- --2 sinwB/Y exp(-B/Xy)+0(a) (31)

YX

In both (30) and (31) the expressions may become negative; this also occurs

in the Bird-Macdonald model 10 . Figure 11 shows values of ^G I JX /rto ; for

X(O < 1, 1.4 1 Gp is negative foi e the rupture' model. and the Eird-Macdonald

model respectively. This extraordinary behaviour is masked with many time



-11-

constants and has not been observed to the author's knowledge. The experi-

ments of Osaki et al 
21,22 

unfortunately do not cover aide enough ranges of

variables accurately to inspect the type of result given by equation (24).

In the experiments of Booij 23 the values of dynamic viscosity n p(Y )w) are

considerably below the value of n s (Y) for the lowest frequencies; this is

predicted by equation (31). In summary, we note that the superposition of

small-amplitude and simple shearing gives some interesting results and that

the transverse configuration is the least complex. In addition, it is clear

that both integral theories give reasonable predictions here; perhaps the

network rupture theory is a little better overall. The striking reduction

In fluid elasticity due to shearing is obvious; in references 2, 13 and 22

the changes of the relaxation spectra }i(A) due to shearing are discussed.

4. rinite Ampl itude Unsteady Shearing Motions

In this section we investigate inertialess shearing motions in

which the velocity field is of the form (3) but where the shear rate is a

function of time. It must be said that the dismissal of inertia in such

flows may often be unrealistic and care may be necessary in experimental

comparisons.

A popular test 
16 

has been the study of the decay of shearing

stresses after suddenly stopping a steady shear flog . In this case we find

that the rupture and Bird-Macdonald models give practically identical results.

It is easily shown that for discrete relaxation times they both give the

result

txy c	 ae-t/an f(A Y)	 (32)
Y	 n n

where f(X y ) gives the steady-shear viscosity ratio n s/np for a single

relaxation time X n (eqn. (16) for the rupture model). Except with the

single relaxation time, the normal stress differences relax more slowly than

the shear stress. 4 Despite its popularity
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we see that the stop-shear test is useless for distinguishing between reasonable

non-linear theories. The start-shear test is much more informative and this is

now discussed.

In the start-shear problem it is clear that no linkages can rupture

before the fluid has been strained a certain amount. When shearing does

commence, we have

SXY = Y(t - t'), t' > 0

t > 0	 (33)
Y 	 0 >t'

For t < 0 s S = 0 . Hence (1) becomes 

it
	
i

0

tXY	
N y(t - t')dt' + Yt 	 N(t - t') dt'	 (34)
 t-TR

To find TR we calculate tr B , which is then equated to B 2 . Hence, using

the expression for negative t' in (33), we find

	

Yt = B
	

(35)

and thus no rupture occurs before a time B/y has elapsed after starting; in

this region 
x  

is infinite and Lodge's result  is recovered. Immediately

after this time (t = B/Y) all the surviving old linkages rupture and a state of

steady shearing is instantly reached. This occurs because the memory time now

goes back a distance B/Y ; for t > B/Y the second integral in (3 11) vanishes

while the first integral yields the result (16). Evaluating the integrals (34)

we find, in terms of the "transient" viscosity tXY/Y,

tX,^.	
n^(t,Y)	

1 - e-t/X	 B
/}	 Y tYJ . r1^^ -	

-1 -1/r for — > t
1-(Itr )e	 Y

"

	

	 (36)
- 1 for t > B/Y

This expressicn i.s for a single relaxation time X. It is easily shown that

the Bird-Macdonald model gives the corresponding result

	

nS(t,Y)	
-t/a	 2 2

- = 1 - e	 (1 - c aY t)	 (37)
ns(Y) 

Choosing c = 1.68/B we compare these expressions in Fig. 12. The rupture model

shows a much quicker, return after overshoot and this seems to be

I IN "FIF Milli I 0-011M 11m



characteristic of experivents 25 . Unfortunately it is not possible to

compare with the data of reference 25 because the dynamic measurements

are not given. One expects that this test will provide a means for

estimating the distribution of rupture strains by looking at the peak

shape; certainly one expects rounder peaks than those predicted for a

h o Re-J,
constant rupture strain. It is c-x^e- 	 that this type of experiment will

be quite useful in distinguishing between theories.

As a final example of this type of motion we consider a sinu-

soidal shearing motion of finite amplitude, again neglecting inertia.

Philippoff 26 has reported some experiments on this type of motion in which

inertia may have played a negligible role. Suppose that the variable

shear is sinusoidal, i.e.

y = -Awsinwt	 (38)

Then we find that S	 has the value
xy

S (t') = A{coswt - coswt') 	 (39)
xy

and tr B is SXy	Hence rupture occurs when Sxy = B. From equation

(39) and Fig. 13a we see that no rupture ever occurs if B > 2a . In this

case the problem is linear and the value of txy is given, for n discrete

relaxation times, by

-wE = L 
an A

ncos^ - C an sinO	 (a 	 l	 (40)
n	 1+ An	n	 1+A	 l	 J

where © = wt, An = wAn . For B > a > B/2 we have rupture occurring as

shown in the shaded parts of fig. 13b. The unshaded areas continue to

contribute to the stresses in the medium and their toted effect is expressed

as a series which can be suwTed readily. The final expression for txy/Aw
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is given by

tx 	an exp-(n/2+0)/An 	a 
I

Tr/A	 1
-H- = -cosa Y ---	 sinht/A +H(0 -,r+0 Binh - e	 n - 1

aw	 n An sink n/2An I 	 13 n	 An 

a	 a A
- sin0	 n t cosa	

n	
-

n 1+A 2	n 1+A`
n	 n

_ c an exp - (r/2+0)/An	AnsinC cosh f,/A n + cost sink VA 

n An (1+An) cosh 1r /2An
	 tt/A	 a

- H(0-rtE)(e	 ntl) sink ^ cosa
n

I+A 
n 
cosh 

A 
sina

n	 (i+1)

where H(x) is the Heaviside function, equal to unity for x > 0 , zero for,

0>x,

cost = B - 1	 (42)

cosa = a- t cosa	 (43)

In equations( r+l)- ( 113) 	 n > 0 > 0 , and R > a > 2
	

The function (Ill)

is such that

txy (0 t n) _ - txy (0)
	

(4r+)

For larger values of a the expressions are simplified. From Fig. 13c we

see that all junctions except those forged less than a half-cycle ago have

been destroyed in 11:1s case:' Thus for	 0 <0 < &,
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fiW = Cos 01 An 1 - exp -(0+C) /A re - an? G^=e t sin0
n n	 n 1i A	 nn

(45)
CC	 exp -(0+E)/A

+ n an	 1 + A2	

n (F51sj.An -sing

n

For t 4 8 < d , where

cosd = 1 - 2B/A	 (46)

we have

t	 t(1)

	

xy = Expression (45) - --YY'—	 (47)
WS	 WA

where

t(1)	 a

	

- 2cos0	 -^! exp - 0/An sinh
n n	 n

a exp - e/A Cosa
- 2	 n	 n	 sinh (a

	n 	 An(1 + A 2
n 	 jAn

a exp - 0/A
- 2	

n	
2 n sina cosh(V

	

n	 1 + An	 n	 (48)

while for r > 0 > d we have

tW 	 - cos0 I ^^ (1 - exp - (0 - d)/An)
n n

	

_ C _a_n	
(
co::0 + sine l

	

n1+A 2 	 An-^	 1
n	 =

r a exp-(0-6)/A

	

+ ` n
	

2 n ('0" i sindf (49)
n	 1 + A 	 n

n



Some of these expressions are portrayer] in figs. 15 and 16 for the fluids

shown in fig. 14. In both cases n o = 1 poise and there is a single

time constant.For fluid A np = 0.6 poise and for fluid B np = 0 .

In both cases we choose A = 4 , B = 2 , A = 1 . Fi g . 15 shows the

response for fluid A and for the same fluid with B > Q (linear visco-

elasticity). The flattening of the curve in the region of maximum speed

and the reduced elasticity as evinced by the very much reduced phase

shift (measured by the curve intercepts on the 0-axis) show clearly.

The third harmonic appears to be about 6% of the fundamental.Phili.ppoff26

experimenting with a fluid having properties similar toA, gives the same

general predictions and the same size of third harmonic (< 10%). Fluid

B shows a more dramatic change from the linear case, fig. 16. The third

harmonic is about 300 ,reater than the first in this case and again the

phase shift is reduced. A curve is drawn on fig. 16 indicating; a linear

response cut down by assuming n o to be that corresponding to the mean

shear rate Ym , where

Y  = 29wh	 (50)

This fails to predict phase, amplitude or harmonic content changes.

The rupture theory has not been compared with the Bird-Macdonald 10

model here. The latter gives rise to integrals not expressible in terms of

tabulated functions.

5. F l.on`ational F lows

He have seen that the two simple integral models discussed above

behave similarly in shearing flows. Although a great many laminar flows

of interest belong to this category it is desirable to test any new consti-

tutive approximations in other types of flow. Recently the simple
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extensional flows have become of some interest 
4,33 

and here we consider

two-dimensional (sheet) and three-dimensional (rod) extensions.

For the sheet case (pure shear) the velocity field is of the

f orm

	

V = (Gx, -Gy, 0)
	

(51)

and the rate of deformation matrix has 	 diagonal elements G, -G, 0

respectively. From reference 4 we find the strain field B(t') also has

a diagonal form with non-zero elements as follows

B	 = e2G(t-t') - 1
Bxx = 

e
-2G(t-t') - 

1	
(52)

YY

Computing txx - tyy by assuming tyy = 0 (ambient pressure) we find

t(

	

txx-tyy =	 J	 2N (t-t') sinh 2G (t-t') dt' 	 (53)

t-TR

and also

tr B(t') = 2[cosh 2G (t-t') - 13 = B2	(54)

Equation (54) def5i;es the rupture time 
TR 

as

2

TR = 2G c
o sh -1 (1 + 2 )	 (55)

Integrating, we find, for n discrete relaxation times,

n an exp TP(2G
-lAn)	

1	 exp-T (2.G+1 /An - 1
txY -- tyy = ^ Z— _	

2GA - 1
--____ . + --- 2Ga + 1 -----	 ( 56 )

	

n	 n	 n

The corresponding result for the Bird--Macdonald model is, for 1 > 2GAri

n	 4a
cc	 n 

txx - tyy - G an(1+2c2A2G2)(1-4G2A7	
(^7)
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For 2GX n > 1 the integrals leading to (5'I) diverge and no solution is

at hand. The results (56) and (57) are compared in Fig. 17 for B = 3,

c = 1.68/B ; here

ne
2 

= ( txx-tyyVG
	

(58)

The 'results for a three-dimensional (rod) elongation have been given

previously 2 . Fig. 18 shows the results for a single time constant with

various values of breaking strain B . The quantity B is related to B

(in pure shear) by the equation

2
$= 2 cosh

-1
 (1 t 2) s T G	 (59)

with a similar result for simple extension 2 . With these results it is

possible to make an attempt at explaining the results of Ballman 33 using

the rupture theory. Since no dynamic measurements are available only two

time constants have boei

al = 467 lbf.s/in? a2

polated (dashed) curves

$ = 2.5 (B = 12.2) we

i used. We take 1 1 = 200 sec , 12 = 20 sec , with

200 lbi.s/in? These values correspond to the extra-

in fig. 19, which are not impossible. With

find a hump in the elongational viscosity of the

right order of magnitude. Further tenns in the kernel would improve the

shape of the hump if required. It is discussed elsewhere 
13 

that solid

materials will be expected to have larger values of B than solutions.

Accepting this, then the mystery of high, but not infinite, elongational

viscosities disappears.

^2- ---- ----

This paper has attempted a comparative study of the network 	 }

rupture theory and other simple integral theories. Both of the principal

theories considered need only the following tests for estimation of the
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parameters involved:

(a) The dynamic viscosity. This fixes the form of N(T) and

allows the an , an to be chosen.

(b) The shear-stress-shear-rate curve. Using this data with

test (a) one can find the rupture strain magnitude W. In the Bird-
Macdonald theory lD c may be found in a similar way.

(c) The second normal stress difference allows c to be

estimated.

Providing one is willing to accept the type of spectrum used

by Spriggs et ala one could say that both theories require five constants.

This aspect has not been emphasized here. The first normal stress differ-

ence and the rest of the uniform stress tests given above are Rredicted

with no further parameter adjustment. If one was willing to pica: the best

overall value of B (or c) to fit both viscosity and normal stress data

quite close agreement with these tests could be obtained. 'then, however,

one cannot strictly say that the first normal stress is predicted.

DoughtV7. and Bogue 27 have effectively tried this approach; some of their

results for the BKZ 
28 

model are identical to the Bird-Macdonald model

(eqn. 12) while Bogue's own model  yields the type of result given in

equation (8). According to this work 27 , the Bogue and BKZ models are more

accurate than Pao's 29 model or a differential model of the Oldroyd type30.

In the present writer's opinion the Hogue . and BKZ models are not superior

in convenience, accuracy or physical insight to the Bird-Macdonald 10 model in

simple shearing. For more complex flows they are decidedly more inconvenient.

Furthermore, all of these theories predict infinite stresses in pure shearing

at a finite shearing rate. The present author considers that this is an un-

31,32
realistic prediction, but this is riot a universally held opinion.
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Evidence supporting this idea occurs in the data of Ballman
33
 and Nitsch-

mann 34 whose data show that some of the relaxation times are greater than

1/2 G . Astarita 32 has stated that "fluids for which the rate of stress

relaxation is essentially exponential may flow at any value of 	 IId

without developing infinite stresses, but cannot flow at values of

J1 I -Ii w exceeding some cr;tical upper limit of the order of unity" .

Here 
11  

is the second invariant of the vorticity tensor. Referring to

equations (32) and fig. 18 we immediately see that Astarita's 32 conclusion

is false. Our rupture theory relaxes exponentially and does not have a

maximum shear rate. The network theory of Yamamoto 
35 

also shows r,o

maximum shear rate. One suspects that a proper three-dimensional formula-

tion of the work of Graessley 36 would shore a maximum shear rate effect.

Thus it is concluded that network rupture, which is a natural physical

effect, is effective in suppressing these unrealistic infinite stresses

at finite --lon„ation rates.

It would also be possible to use something like the rate

factor [1 t 2c21 2 II(t')] -1 to represent the effect of sheari.nj7, on junction

formation while retaining the network rupture for terminating old junctions.

Such a composite theory seems to be physically reasonable and would allow

a better fit (not prediction) of the first normal stress difference at higher

shear rates. In many cases the extra complexity would not be warranted,

one suspects, and the simple rupture theory will be adequate.

The deficiencies of the present model appear to be associated

with most simple isotropic fluids and it is hard to see how much improve-

menL in fitting the combined shear test (fig. 7) for example, can be made 	 1 '=

without tremendous computational disabilities 19 . Probably the best

approach now lies in the study of the molecular constitution rather than in
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pure continuum mechanics. Obviously details of the network formation and

rupture should be considered and some improvements can certainly be made

in this direction. Scope also clearly exists for further critical experi-

mental work in testing the various theories on different fluids and

developing computational methods for more complex flows. The author is

not convinced that a perfect fit to all existing data will ever be made

with simple integr I models of the type considered here. However, it

i, encouraging that opinion is now converging on this type of theory as

representing the best type of simple constitutive equation for polyner

fluids.
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Captions for Figures

Fig. 1.	 Comparison of theoretical viscosity and normal stress curves.

Fig. 2.	 Comparison with viscosity data for 5.4% polyisobutylene-cetane
solution at 25°C.

Fig. 3.	 Comparison of normal stress data and dynamic elasticity.

Fig. 4.	 Experimentally observed ratio of normal stress differences.

Fig. 5.	 Response to combined sinusoidal and simple shearing (transverse
case) for a single time constant. Viscosity data.

Fig. 6.	 Combined shear test (transverse case). Elasticity data,

Fig. 7.	 Comparison of combined shearing with experiments on a 5.4%
p.i.b/cetane solution. Viscosity data.

Fig. 8.	 Comparison of combined shearing with experiments on 5,1+°;
p.i.b/cetane solution. Elasticity data.

Fig. 9.	 Experimental data for 1.5% carboxymethylcellulose-water solution.
Viscosity rata.

Fig. 10. CMC-water solution. Elasticity data.

Fig. 11. Combined sinusoidal and simple shearing (parallel case) for a
single time constant. Elasticity data,

Fig. 12. Start-shear theoretical curves.

Fig. 13. Regions of network rupture in finite amplitude sinusoidal
shearing.

Fig. 1<<. Theoretical viscosity functions A and B.

Fig. 15. Response to finite amplitude sinusoidal shearing. Fluid A.

Fig. 16. Response to finite amplitude sinusoidal shearing. Fluid B.

Fig. 1.7. Pure shear results for a single time constant.

Fig. 18. Elongational flow results for rupture theory.

33
Fig. 19. Comparison of rupture theory and experiment of Ballman.
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