Conjugated polymers can be reversibly doped by electrochemical means. This
doping introduces new sub-bandgap optical absorption bands in the polymer while
decreasing the bandgap absorption. To study this behavior, we have prepared an
electrochemical cell allowing measurements of the optical properties of the
polymer. The cell consists of a thin polymer film deposited on gold-coated
Mylar behind which is another polymer that serves as a counterelectrode. An
infrared transparent window protects the upper polymer from ambient air. By
adding a gel electrolyte and making electrical connections to the
polymer-on-gold films, one may study electrochromism in a wide spectral range.
As the cell voltage (the potential difference between the two electrodes)
changes, the doping level of the conjugated polymer films is changed
reversibly. Our experiments address electrochromism in
poly(3,4-ethylene-dioxy-thiophene) (PEDOT) and
poly(3,4-dimethyl-propylene-dioxy-thiophene) (PProDOT-Me2). This closed
electrochemical cell allows the study of the doping induced sub-bandgap
features (polaronic and bipolaronic modes) in these easily oxidized and highly
redox switchable polymers. We also study the changes in cell spectra as a
function of polymer thickness and investigate strategies to obtain cleaner
spectra, minimizing the contributions of water and gel electrolyte features