6 research outputs found
Recommended from our members
Characterization of a novel fusion gene EML4-NTRK3 in a case of recurrent congenital fibrosarcoma
We describe the clinical course of a recurrent case of congenital fibrosarcoma diagnosed in a 9-mo-old boy with a history of hemimelia. Following complete surgical resection of the primary tumor, the patient subsequently presented with bulky bilateral pulmonary metastases 6 mo following surgery. Molecular characterization of the tumor revealed the absence of the prototypical ETV6-NTRK3 translocation. However, tumor characterization incorporating cytogenetic, array comparative genomic hybridization, and RNA sequencing analyses, revealed a somatic t(2;15)(2p21;15q25) translocation resulting in the novel fusion of EML4 with NTRK3. Cloning and expression of EML4-NTRK3 in murine fibroblast NIH 3T3 cells revealed a potent tumorigenic phenotype as assessed in vitro and in vivo. These results demonstrate that multiple fusion partners targeting NTRK3 can contribute to the development of congenital fibrosarcoma
Data from: Characterization of a novel fusion gene EML4-NTRK3 in a case of recurrent congenital fibrosarcoma
We describe the clinical course of a recurrent case of congenital fibrosarcoma diagnosed in a 9-mo-old boy with a history of hemimelia. Following complete surgical resection of the primary tumor, the patient subsequently presented with bulky bilateral pulmonary metastases 6 mo following surgery. Molecular characterization of the tumor revealed the absence of the prototypical ETV6-NTRK3 translocation. However, tumor characterization incorporating cytogenetic, array comparative genomic hybridization, and RNA sequencing analyses, revealed a somatic t(2;15)(2p21;15q25) translocation resulting in the novel fusion of EML4 with NTRK3. Cloning and expression of EML4-NTRK3 in murine fibroblast NIH 3T3 cells revealed a potent tumorigenic phenotype as assessed in vitro and in vivo. These results demonstrate that multiple fusion partners targeting NTRK3 can contribute to the development of congenital fibrosarcoma
Recommended from our members
Characterization of a novel fusion gene EML4-NTRK3 in a case of recurrent congenital fibrosarcoma
Abstract We describe the clinical course of a recurrent case of congenital fibrosarcoma diagnosed in a 9-mo-old boy with a history of hemimelia. Following complete surgical resection of the primary tumor, the patient subsequently presented with bulky bilateral pulmonary metastases 6 mo following surgery. Molecular characterization of the tumor revealed the absence of the prototypical ETV6-NTRK3 translocation. However, tumor characterization incorporating cytogenetic, array comparative genomic hybridization, and RNA sequencing analyses, revealed a somatic t(2;15)(2p21;15q25) translocation resulting in the novel fusion of EML4 with NTRK3. Cloning and expression of EML4-NTRK3 in murine fibroblast NIH 3T3 cells revealed a potent tumorigenic phenotype as assessed in vitro and in vivo. These results demonstrate that multiple fusion partners targeting NTRK3 can contribute to the development of congenital fibrosarcoma
1328201287_253058711593_1_4
Agilent array comparative genomic hybridization data for the described tumor
Recurrent EML4-NTRK3 fusions in infantile fibrosarcoma and congenital mesoblastic nephroma suggest a revised testing strategy
Infantile fibrosarcoma and congenital mesoblastic nephroma are tumors of infancy traditionally associated with the ETV6-NTRK3 gene fusion. However, a number of case reports have identified variant fusions in these tumors. In order to assess the frequency of variant NTRK3 fusions, and in particular whether the recently identified EML4-NTRK3 fusion is recurrent, 63 archival cases of infantile fibrosarcoma, congenital mesoblastic nephroma, mammary analog secretory carcinoma and secretory breast carcinoma (tumor types that are known to carry recurrent ETV6-NTRK3 fusions) were tested with NTRK3 break-apart FISH, EML4-NTRK3 dual fusion FISH, and targeted RNA sequencing. The EML4-NTRK3 fusion was identified in two cases of infantile fibrosarcoma (one of which was previously described), and in one case of congenital mesoblastic nephroma, demonstrating that the EML4-NTRK3 fusion is a recurrent genetic event in these related tumors. The growing spectrum of gene fusions associated with infantile fibrosarcoma and congenital mesoblastic nephroma along with the recent availability of targeted therapies directed toward inhibition of NTRK signaling argue for alternate testing strategies beyond ETV6 break-apart FISH. The use of either NTRK3 FISH or next-generation sequencing will expand the number of cases in which an oncogenic fusion is identified and facilitate optimal diagnosis and treatment for patients